im钱包下载地址|argon

作者: im钱包下载地址
2024-03-07 17:04:41

氩(化学元素)_百度百科

元素)_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心氩是一个多义词,请在下列义项上选择浏览(共4个义项)展开添加义项氩[yà]播报讨论上传视频化学元素收藏查看我的收藏0有用+10氩(Argon),非金属元素,元素符号Ar。氩是单原子分子,单质为无色、无臭和无味的气体。是稀有气体中在空气中含量最多的一个,由于在自然界中含量很多,氩是最早发现的稀有气体。化学性质极不活泼,但是已制得其化合物——氟氩化氢。氩不能燃烧,也不能助燃。氩的最早用途是向电灯泡内充气。焊接和切割金属也使用大量的氩。用作电弧焊接不锈钢、镁、铝和其他合金的保护气体,即氩弧焊。中文名氩外文名Argon熔    点-189.2 ℃沸    点-185.7 ℃外    观无色气体发现人瑞利、拉姆赛元素符号Ar原子量39.948原子序数18周    期第三周期族0族区p区电子排布[Ne]3s23p6目录1发现历史2物理性质3化学性质4主要用途发现历史播报编辑固态氩氩曾经在1785年由亨利·卡文迪什制备出来,但却没发现这是一种新的元素;直到1894年,约翰·威廉·斯特拉斯和苏格兰的化学家威廉·拉姆齐才通过实验确定氩是一种新元素。他们主要是先从空气样本中去除氧、二氧化碳、水汽等后得到的氮气与从氨分解出的氮气比较,结果发现从氨里分解出的氮气比从空气中得到的氮气轻1.5%。虽然这个差异很小,但是已经大到误差的范围之外。所以他们认为空气中应该含以一种不为人知的新气体,而那个新气体就是氩气。 [1]另外1882年H.F.纽厄尔和W.N.哈特莱从两个独立的实验中观测空气的颜色光谱时,发现光谱中存在已知元素光谱无法解释的谱线,但并没有意识到那就是氩气。由于在自然界中含量很多,氩是最早发现的稀有气体,它的符号为Ar(在1957年以前,它的符号为A)。 [2]氩的发现解释了为什么氮从空气中提取的密度不同于分解氨获取的。Ramsay在空气中提取的氩中移除了所有氮,由其和热的镁反应实现的,形成固态的氮化镁。他之后得到了一种不发生反应的气体,当他检查其光谱后,他看到了一组新的红色和绿色的线,从而确认了这是一种新的元素。瑞利勋爵19世纪末期,英国物理学家瑞利勋爵发现利用空气除杂制得的氮气和从氨制得的氮气的密度有大约是千分之一的差别。他在当时很有名望的英国《自然》杂志上发表了他的发现,并请大家帮他分析其中的原因。伦敦大学化学教授莱姆塞推断空气中的氮气里可能含有一种较重的未知气体。他们两人又各自做了大量的实验,终于发现了在空气中还存在一种密度几乎是氮气密度一倍半的未知气体。1894年8月13日,英国科学协会在牛津开会,瑞利作报告,根据马丹主席的建议,把新的气体叫做argon(希腊文意思就是“不工作”、“懒惰”)。元素符号Ar。当然,当时发现的氩,实际上是氩和其他惰性气体的混合气体,正是因为氩在空气中存在的惰性气体的含量占绝对优势,所以它作为惰性气体的代表被发现。氩的发现是从千分之一微小的差别开始的,是从小数点右边第三位数字的差别引起的,不少化学元素的发现,许多科学技术的发明创造,都是从这种微小的差别开始的。物理性质播报编辑氩在通常条件下为无色、无味气体。有24种同位素,40Ar、36Ar、38Ar是稳定的,其中40Ar占99.6%。氩通电之后发出红紫色的光。 [2]物理性质熔点-189.2℃沸点-185.7℃气体密度1.784g/L水中溶解度33.6cm3/L在大气中的含量0.934%化学性质播报编辑化学元素周期表零族(类)主族元素,符号Ar,原子序数18。化学性质极不活跃,一般不生成化合物,但可与水、氢醌等形成笼状化合物。 [3]氩的化学性质极其稳定,一般不与其它元素化合。至今仅在极端条件下制得唯一的氩化合物氟氩化氢(HArF)。这个氟、氢和氩的化合物在-265℃才能保持稳定。此外,氩还可以作为客体分子,与水形成包合物。除了以上基态的物质外,已经发现含氩的离子和激发态配合物(像ArH和ArF),而根据理论计算显示氩应该可以形成在室温下稳定的化合物,虽然还没有发现它们存在的线索。此外,2003年时有媒体报道ArF2的存在,但尚未证实。 [2]原子序数18原子量39.98原子半径1.54主要用途播报编辑氩气最主要的用处就是它的惰性,可以保护一些容易与周围物质发生反应的东西。虽然其他的惰性气体也有这些特性,但是氩气在空气中的含量最多,也是最容易取得,因此相对就比较便宜,具有经济效益。另外氩气便宜的原因还有它是制造液氧和液氮的副产品,而由于它们两个都是工业上重要的原料,生产很多,所以每年都有很多的液氩副产品。氩可用来制所谓氩灯。氩灯里填充的是纯氩气。这种灯光度较弱,耗电量低,比信号灯便宜。 [4]氩气常被注入灯泡内,因为氩即使在高温下也不会与灯丝发生化学作用,从而延长灯丝的寿命。在不锈钢、锰、铝、钛和其它特种金属电弧焊接时、钢铁生产时,氩也用作保护气体。 [2]在高温冶炼纯金属时,常用氩以防止氧化、氮化氢化等作用。在电弧焊接不锈钢、镁铝等时用作保护气体。由于它不易导热,也可用于充气灯泡。 [3]可用于灭火,用氩气灭火的好处是几乎不会破坏任何火场的物品,通常使在火场有特殊仪器时才使用,是用于感应耦合等离子的气体之一,保护成长中的硅晶体和锗晶体,这晶体主要用于半导体学。在博物馆里,会在一些重要文物的玻璃专柜里填充氩气,避免氧化。在酿酒的过程中,啤酒桶里的填充物,它可以把氧气置换,以避免啤酒桶里的原料被氧化成乙酸。在药学里,氩可以用于保护一些静脉内的治疗的药物,举个例子,像是对乙酰氨基酚。一样的,这也是防止药物受到氧气的破坏。用于冷却AIM-9响尾蛇导弹的追踪器,氩当时都是以高压储存,然后当释放气体后就可以带走一些热量。为石墨电熔炉中的保护气体,以免它被氧化。另外氩气的低传热率也是它的特性之一,像它可以作为隔热窗户中两层玻璃之间的填充物。因为它的低传热率和惰性,氩气在水肺潜水可以用来作为膨胀潜水衣的气体。氩气还可以在水肺中代替氮气(吸收纯氧对身体不好,因此水肺中要添加其他气体),因为氮气在高压下会溶进血液里而造成氮麻醉,氩气则可以减轻这种症状。使用特定的方法可以使氩气离子化并且发光,这种功能可用于等离子灯和粒子物理学中的能量器。以氩作成的氩雷射会发出蓝光,它在医学外科中可用于连接动脉、去除肿瘤和治疗眼睛的缺陷等。氩气还可以用于溅镀。另外氩-39有269年的半衰期,可以用于测定地下水和冰层的年龄,而钾-氩年代测定法适用钾-40衰变成氩-40的过程来用于测定火成岩的年龄。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

Argon - Element information, properties and uses | Periodic Table

Argon

- Element information, properties and uses | Periodic Table

Jump to main content

Periodic Table

Home

History

Alchemy

Podcast

Video

Trends

Periodic Table

Home

History

Alchemy

Podcast

Video

Trends

 

You do not have JavaScript enabled.

Please enable JavaScript to access the full features of the site.

 

Glossary

Allotropes

Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.

For more information on the Visual Elements image see the Uses and properties section below.

< Move to Chlorine

Move to Potassium >

Argon

Discovery date

1894 

Discovered by

Lord Rayleigh and Sir William Ramsay 

Origin of the name

The name is derived from the Greek, 'argos', meaning idle. 

Allotropes

-

 

Ar

Argon

 

18

39.95

 

 

Glossary

Group

A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.

Period

A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.

Block

Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).

Atomic number

The number of protons in an atom.

Electron configuration

The arrangements of electrons above the last (closed shell) noble gas.

Melting point

The temperature at which the solid–liquid phase change occurs.

Boiling point

The temperature at which the liquid–gas phase change occurs.

Sublimation

The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.

Density (g cm−3)

Density is the mass of a substance that would fill 1 cm3 at room temperature.

Relative atomic mass

The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.

Isotopes

Atoms of the same element with different numbers of neutrons.

CAS number

The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.

Fact box

Fact box

Group

18 

Melting point

−189.34°C, −308.81°F, 83.81 K 

Period

Boiling point

−185.848°C, −302.526°F, 87.302 K 

Block

Density (g cm−3)

0.001633 

Atomic number

18 

Relative atomic mass

39.95

 

State at 20°C

Gas 

Key isotopes

40Ar 

Electron configuration

[Ne] 3s23p6 

CAS number

7440-37-1 

ChemSpider ID

22407

ChemSpider is a free chemical structure database

 

Glossary

Image explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.

Appearance

The description of the element in its natural form.

Biological role

The role of the element in humans, animals and plants.

Natural abundance

Where the element is most commonly found in nature, and how it is sourced commercially.

Uses and properties

Uses and properties

Image explanation

The image reflects the use of the element in the welding industry. Argon provides an inert atmosphere in which welded metals will not oxidise.

Appearance

Argon is a colourless, odourless gas that is totally inert to other substances.

Uses

Argon is often used when an inert atmosphere is needed. It is used in this way for the production of titanium and other reactive elements. It is also used by welders to protect the weld area and in incandescent light bulbs to stop oxygen from corroding the filament. Argon is used in fluorescent tubes and low-energy light bulbs. A low-energy light bulb often contains argon gas and mercury. When it is switched on an electric discharge passes through the gas, generating UV light. The coating on the inside surface of the bulb is activated by the UV light and it glows brightly. Double-glazed windows use argon to fill the space between the panes. The tyres of luxury cars can contain argon to protect the rubber and reduce road noise.

Biological role

Argon has no known biological role.

Natural abundance

Argon makes up 0.94% of the Earth’s atmosphere and is the third most abundant atmospheric gas. Levels have gradually increased since the Earth was formed because radioactive potassium-40 turns into argon as it decays. Argon is obtained commercially by the distillation of liquid air.

 

Help text not available for this section currently

History

History

Elements and Periodic Table History

Although argon is abundant in the Earth’s atmosphere, it evaded discovery until 1894 when Lord Rayleigh and William Ramsay first separated it from liquid air. In fact the gas had been isolated in 1785 by Henry Cavendish who had noted that about 1% of air would not react even under the most extreme conditions. That 1% was argon.Argon was discovered as a result of trying to explain why the density of nitrogen extracted from air differed from that obtained by the decomposition of ammonia. Ramsay removed all the nitrogen from the gas he had extracted from air, and did this by reacting it with hot magnesium, forming the solid magnesium nitride. He was then left with a gas that would not react and when he examined its spectrum he saw new groups of red and green lines, confirming that it was a new element.

 

Glossary

Atomic radius, non-bonded

Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.

Covalent radiusHalf of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.

Electron affinityThe energy released when an electron is added to the neutral atom and a negative ion is formed.

Electronegativity (Pauling scale)The tendency of an atom to attract electrons towards itself, expressed on a relative scale.

First ionisation energyThe minimum energy required to remove an electron from a neutral atom in its ground state.

Atomic data

Atomic data

Atomic radius, non-bonded (Å)

1.88

Covalent radius (Å)

1.01

Electron affinity (kJ mol−1)

Not stable

Electronegativity (Pauling scale)

Unknown

Ionisation energies (kJ mol−1) 

1st

1520.571

2nd

2665.857

3rd

3930.81

4th

5770.79

5th

7238.33

6th

8781.034

7th

11995.347

8th

13841.79

 

Glossary

Common oxidation states

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.

Isotopes

Atoms of the same element with different numbers of neutrons.

Key for isotopes

Half life

 

y

years

 

d

days

 

h

hours

 

m

minutes

 

s

seconds

Mode of decay

 

α

alpha particle emission

 

β

negative beta (electron) emission

 

β+

positron emission

 

EC

orbital electron capture

 

sf

spontaneous fission

 

ββ

double beta emission

 

ECEC

double orbital electron capture

Oxidation states and isotopes

Oxidation states and isotopes

Common oxidation states

Isotopes

Isotope

Atomic mass

Natural abundance (%)

Half life

Mode of decay

 

36Ar

35.968

0.3336

 

38Ar

37.963

0.0629

 

40Ar

39.962

99.6035

 

Glossary

Data for this section been provided by the British Geological Survey.

Relative supply risk

An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.

Crustal abundance (ppm)

The number of atoms of the element per 1 million atoms of the Earth’s crust.

Recycling rate

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.

Substitutability

The availability of suitable substitutes for a given commodity.

High = substitution not possible or very difficult.

Medium = substitution is possible but there may be an economic and/or performance impact

Low = substitution is possible with little or no economic and/or performance impact

Production concentration

The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.

Reserve distribution

The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.

Political stability of top producer

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.

Political stability of top reserve holder

A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.

Supply risk

Supply risk

Relative supply risk

Unknown

Crustal abundance (ppm)

3.5

Recycling rate (%)

Unknown

Substitutability

Unknown

Production concentration (%)

Unknown

Reserve distribution (%)

Unknown

Top 3 producers

Unknown

Top 3 reserve holders

Unknown

Political stability of top producer

Unknown

Political stability of top reserve holder

Unknown

 

Glossary

Specific heat capacity (J kg−1 K−1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.

Young's modulus

A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.

Shear modulus

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.

Bulk modulus

A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.

Vapour pressure

A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

Pressure and temperature data – advanced

Specific heat capacity (J kg−1 K−1)

520

Young's modulus (GPa)

Unknown

Shear modulus (GPa)

Unknown

Bulk modulus (GPa)

Unknown

Vapour pressure

 

Temperature (K)

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Pressure (Pa)

-

-

-

-

-

-

-

-

-

-

-

 

Help text not available for this section currently

Podcasts

Podcasts

Listen to Argon Podcast

Transcript :

Chemistry in its element: argon (Promo)You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.(End promo)Chris SmithHello, this week the element that's so indolent that scientists at one time thought it wouldn't react with anything, but in the chemical world laziness can have its advantages especially if it's super quiet car tyres or a safe chemical with which to pump up your diving suit that you're after. Here's John Emsley.John EmsleyIt's lazy, it's hard-working, it's colourless, it's colourful - it's argon!Argon's name comes from the Greek word argos meaning lazy and indeed for more than a hundred years after its discovery chemists were unable to get it to combine with any other elements. But in the year 2000, chemists at the University of Helsinki led by Markku Räsänen announced the first ever compound: argon fluorohydride. They made it by condensing a mixture of argon and hydrogen fluoride on to caesium iodide at -265oC and exposing it to UV light. On warming above just -246oC it reverted right back to argon and hydrogen fluoride. And no other process has ever induced argon to react - [a truly lazy element]. There are 50 trillion tonnes of argon swirling around in the Earth's atmosphere and this has slowly built-up over billions of years, almost all coming from the decay of the radioactive isotope potassium-40 which has a half-life of 12.7 billion years. Although argon makes up 0.93% of the atmosphere it evaded discovery until 1894 when the physicist Lord Rayleigh and the chemist William Ramsay identified it. In 1904 Rayleigh won the Nobel Prize for Physics and Ramsay won the Nobel Prize for Chemistry for their work. The story of its discovery started when Rayleigh found that the nitrogen extracted from the air had a higher density than that made by decomposing ammonia. The difference was small but real. Ramsay wrote to Rayleigh suggesting that he should look for a heavier gas in the nitrogen got from air, while Rayleigh should look for a lighter gas in that from ammonia. Ramsay removed all the nitrogen from his sample by repeatedly passing it over heated magnesium, with which nitrogen reacts to form magnesium nitride. He was left with one percent which would not react and found it was denser than nitrogen. Its atomic spectrum showed new red and green lines, confirming it a new element. Although in fact it contained traces of the other noble gases as well.Argon was first isolated in 1785 in Clapham, South London, by Henry Cavendish. He had passed electric sparks through air and absorbed the gases which formed, but he was puzzled that there remained an unreactive 1%. He didn't realise that he had stumbled on a new gaseous element. Most argon goes to making steel where it is blown through the molten iron, along with oxygen. Argon does the stirring while the oxygen removes carbon as carbon dioxide. It is also used when air must be excluded to prevent oxidation of hot metals, as in welding aluminium and the production of titanium to exclude air. Welding aluminium is done with an electric arc which requires a flow of argon of at 10-20 litres per minute. Atomic energy fuel elements are protected with an argon atmosphere during refining and reprocessing.The ultra-fine metal powders needed to make alloys are produced by directing a jet of liquid argon at a jet of the molten metal. Some smelters prevent toxic metal dusts from escaping to the environment by venting them through an argon plasma torch. In this, argon atoms are electrically charged to reach temperatures of 10 000 °C and the toxic dust particles passing through it are turned into to a blob of molten scrap.For a gas that is chemically lazy argon has proved to be eminently employable. Illuminated signs glow blue if they contain argon and bright blue if a little mercury vapour is also present. Double glazing is even more efficient if the gap between the two panes of glass is filled with argon rather than just air because argon is a poorer conductor of heat. Thermal conductivity of argon at room temperature (300 K) is 17.72 mW m-1K-1 (milliWatts per metre per degree) whereas for air it is 26 mW m-1K-1.For the same reason argon is used to inflate diving suits. Old documents and other things that are susceptible to oxidation can be protected by being stored in an atmosphere of argon. Blue argon lasers are used in surgery to weld arteries, destroy tumors and correct eye defects.The most exotic use of argon is in the tyres of luxury cars. Not only does it protect the rubber from attack by oxygen, but it ensures less tyre noise when the car is moving at speed. Laziness can prove useful in the case of this element. Its high tech uses range from double glazing and laser eye surgery to putting your name in lights.Chris SmithJohn Emsley unlocking the secrets of the heavier than air noble gas argon. Next week, would you marry this man? Steve MylonIt's almost never the case where the popular elements are that way because of their utility and interesting chemistry. But for gold and silver it's all so superficial. They are more popular because they're prettier. My wife for example, a non chemist, wouldn't dream of wearing a copper wedding ring. That might have something to do with the fact that copper oxide has an annoying habit of dyeing your skin green. But if she only took the time to learn about copper, to get to know it some; maybe then she would be likely to turn her back on the others and wear it with pride. Chris SmithSteve Mylon's back to cross your palm with copper on next week's Chemistry in its Element, I hope you can join us. I'm Chris Smith, thank you for listening and goodbye. (Promo)Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements.(End promo)

 

Help text not available for this section currently

Video

Video

Click here to view videos about  Argon

View videos about

►  

►  

 

Help Text

Resources

Resources

Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.

 

Terms & Conditions

Images © Murray Robertson 1999-2011

Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.

Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.

The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.

If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.

Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.

The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.

In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.

We hope that you enjoy your visit to this Site. We welcome your feedback.

References

References

Visual Elements images and videos© Murray Robertson 1998-2017. DataW. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.

Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.

J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.

T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954. Uses and propertiesJohn Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.

Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.

Periodic Table of Videos, accessed December 2014. Supply risk dataDerived in part from material provided by the British Geological Survey © NERC. History textElements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017. PodcastsProduced by The Naked Scientists. Periodic Table of Videos

Created by video journalist Brady Haran working with chemists at The University of Nottingham.

  Explore all elements

A

Aluminium

Argon

Arsenic

Antimony

Astatine

Actinium

Americium

B

Beryllium

Boron

Bromine

Barium

Bismuth

Berkelium

Bohrium

C

Carbon

Chlorine

Calcium

Chromium

Cobalt

Copper

Cadmium

Caesium

Cerium

Curium

Californium

Copernicium

D

Dysprosium

Dubnium

Darmstadtium

E

Europium

Erbium

Einsteinium

F

Fluorine

Francium

Fermium

Flerovium

G

Gallium

Germanium

Gadolinium

Gold

H

Hydrogen

Helium

Holmium

Hafnium

Hassium

I

Iron

Indium

Iodine

Iridium

K

Krypton

L

Lithium

Lanthanum

Lutetium

Lead

Lawrencium

Livermorium

M

Magnesium

Manganese

Molybdenum

Mercury

Mendelevium

Meitnerium

Moscovium

N

Nitrogen

Neon

Nickel

Niobium

Neodymium

Neptunium

Nobelium

Nihonium

O

Oxygen

Osmium

Oganesson

P

Phosphorus

Potassium

Palladium

Praseodymium

Promethium

Platinum

Polonium

Protactinium

Plutonium

R

Rubidium

Ruthenium

Rhodium

Rhenium

Radon

Radium

Rutherfordium

Roentgenium

S

Sodium

Silicon

Sulfur

Scandium

Selenium

Strontium

Silver

Samarium

Seaborgium

T

Titanium

Technetium

Tin

Tellurium

Terbium

Thulium

Tantalum

Tungsten

Thallium

Thorium

Tennessine

U

Uranium

V

Vanadium

X

Xenon

Y

Yttrium

Ytterbium

Z

Zinc

Zirconium

 

rsc.org

Periodic Table

Explore

Home

About us

Membership & professional community

Campaigning & outreach

Journals, books & databases

Teaching & learning

News & events

Locations & contacts

Careers

Awards & funding

Advertise

Help & legal

Membership

Become a member

Connect with others

Supporting individuals

Supporting organisations

Manage my membership

© Royal Society of Chemistry 2024Registered charity number: 207890

Facebook

Twitter

LinkedIn

Youtube

This website collects cookies to deliver a better user experience.

See how this site uses Cookies.

Do not sell my personal data.

Este site coleta cookies para oferecer uma melhor experiência ao usuário.

Veja como este site usa Cookies.

GitHub - solstice23/argon-theme: Argon - 一个轻盈、简洁的 WordPress 主题

GitHub - solstice23/argon-theme: Argon - 一个轻盈、简洁的 WordPress 主题

Skip to content

Toggle navigation

Sign in

Product

Actions

Automate any workflow

Packages

Host and manage packages

Security

Find and fix vulnerabilities

Codespaces

Instant dev environments

Copilot

Write better code with AI

Code review

Manage code changes

Issues

Plan and track work

Discussions

Collaborate outside of code

Explore

All features

Documentation

GitHub Skills

Blog

Solutions

For

Enterprise

Teams

Startups

Education

By Solution

CI/CD & Automation

DevOps

DevSecOps

Resources

Learning Pathways

White papers, Ebooks, Webinars

Customer Stories

Partners

Open Source

GitHub Sponsors

Fund open source developers

The ReadME Project

GitHub community articles

Repositories

Topics

Trending

Collections

Pricing

Search or jump to...

Search code, repositories, users, issues, pull requests...

Search

Clear

Search syntax tips

Provide feedback

We read every piece of feedback, and take your input very seriously.

Include my email address so I can be contacted

Cancel

Submit feedback

Saved searches

Use saved searches to filter your results more quickly

Name

Query

To see all available qualifiers, see our documentation.

Cancel

Create saved search

Sign in

Sign up

You signed in with another tab or window. Reload to refresh your session.

You signed out in another tab or window. Reload to refresh your session.

You switched accounts on another tab or window. Reload to refresh your session.

Dismiss alert

solstice23

/

argon-theme

Public

Notifications

Fork

503

Star

4.2k

Argon - 一个轻盈、简洁的 WordPress 主题

solstice23.top/argon

License

GPL-3.0 license

4.2k

stars

503

forks

Branches

Tags

Activity

Star

Notifications

Code

Issues

143

Pull requests

2

Discussions

Actions

Projects

0

Security

Insights

Additional navigation options

Code

Issues

Pull requests

Discussions

Actions

Projects

Security

Insights

solstice23/argon-theme

This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

 masterBranchesTagsGo to fileCodeFolders and filesNameNameLast commit messageLast commit dateLatest commit History636 Commits.github.github  assetsassets  gutenberggutenberg  languageslanguages  stickersstickers  template-partstemplate-parts  theme-update-checkertheme-update-checker  .gitattributes.gitattributes  .gitignore.gitignore  404.php404.php  LICENSELICENSE  README.mdREADME.md  README_en.mdREADME_en.md  README_ru.mdREADME_ru.md  README_tw.mdREADME_tw.md  admin.cssadmin.css  archive.phparchive.php  argontheme.jsargontheme.js  comments-shuoshuo-preview.phpcomments-shuoshuo-preview.php  comments.phpcomments.php  emotions.phpemotions.php  footer.phpfooter.php  functions.phpfunctions.php  header.phpheader.php  index.phpindex.php  info.jsoninfo.json  login.csslogin.css  msgboard.phpmsgboard.php  page.phppage.php  parsedown.phpparsedown.php  screenshot.pngscreenshot.png  search.phpsearch.php  searchform.phpsearchform.php  settings.phpsettings.php  shuoshuo.phpshuoshuo.php  sidebar.phpsidebar.php  single-shuoshuo.phpsingle-shuoshuo.php  single.phpsingle.php  style.cssstyle.css  timeline.phptimeline.php  unsubscribe-comment-mailnotice.phpunsubscribe-comment-mailnotice.php  useragent-parser.phpuseragent-parser.php  View all filesRepository files navigationREADMEGPL-3.0 license

简体中文 | 繁體中文 | English | Russian

Argon-Theme

Argon - 轻盈、简洁、美观的 WordPress 主题

Hexo 版本 : github.com/solstice23/hexo-theme-argon

状态

重构初步完成,1.x 版本将冻结开发,PR 请提交到 dev 分支。后续将逐渐重构前端代码。

特性

轻盈美观 - 使用 Argon Design System 前端框架,细节精致,轻盈美观

高度可定制化 - 可自定义主题色、布局(双栏/单栏/三栏)、顶栏、侧栏、Banner、背景图、日夜间模式不同背景、背景沉浸、浮动操作按钮等,提供了丰富的自定义选项

夜间模式 - 支持日间、夜间、纯黑三种模式,并可以根据时间自动切换或跟随系统夜间模式

功能繁多 - Tag 和分类统计、作者链接、额外链接、文章字数和预计阅读时间、文章过时信息显示

Pjax - 支持 Pjax 无刷新加载,提高浏览体验

友情链接 - 支持使用 Wordpress 自带的链接管理器进行友链管理,支持多种友链样式

"说说" 功能 - 随时发表想法,并在专门的 "说说" 页面展示,也支持说说和首页文章穿插

评论功能扩展 - Ajax 评论,评论支持 Markdown、验证码、再次编辑、显示 UA、悄悄话模式、回复时邮件通知、查看编辑记录、无限加载等功能

诸多功能 - 文章目录、阅读进度、Mathjax 或 Katex 公式解析、图片放大预览、Pangu.js 文本格式化、平滑滚动等

丰富的短代码 - 支持通过短代码在文章中插入 TODO、标签、警告、提示、折叠区块、Github 信息卡、时间线、隐藏文本、视频等模块

适配 Gutenberg 编辑器 - 支持使用 Gutenberg 编辑器可视化插入区块

多语言 - 支持中文、英文、俄文等语言

其他 - 自适应、精心优化的文章阅读界面 CSS、可切换衬线/非衬线字体、可自定义 CSS 和 JS、支持使用 CDN 加速静态文件访问、SEO 友好、Banner 打字动画、留言板页面、文章脚注等

安装

在 Release 页面下载 .zip 文件,在 WordPress 后台 "主题" 页面上传并安装。

文档

Argon-Theme 文档 : https://argon-docs.solstice23.top

Demo / 用户墙

solstice23.top

argon-demo.solstice23.top

前往 Argon 用户墙 查看更多博客的主题效果。

注意

Argon 使用 GPL V3.0 协议开源,请遵守此协议进行二次开发等。

您必须在页脚保留 Argon 主题的名称及其链接,否则请不要使用 Argon 主题。

您可以删除页脚的作者信息,但是不能删除 Argon 主题的名称和链接。

渲染

Telegram 频道

t.me/argontheme

自动推送更新消息以及其他关于 Argon 的消息

更新日志

20220319 v1.3.5

支持自定义 CDN 域名

支持读取 Post Views Counter 插件的阅读量数据

修复未审核评论被显示的问题

修复评论分页问题

其他改进与修复

20220214 v1.3.4

支持自定义搜索过滤器顺序和默认选中状态

支持添加自定义文章类型的搜索过滤器

修复代码块样式问题

其他改进与修复

20220211 v1.3.3

新增 后台管理界面美化 (在"用户-个人资料-管理界面配色方案" 或 "Argon设置-杂项" 中开启)

新增 CF Worker 更新源,移除 jsdelivr 更新源

支持短代码嵌套

修复多站点下无法编辑主题设置的问题

其他改进与修复

20220207 v1.3.2

使评论区第一页填满评论(评论分页方式为无限加载时)

新增 argon_html_before_wordcount Filter

修复代码块溢出边界的问题

优化代码块控制栏可见性

修复评论排序问题

其他改进与修复

20220205 v1.3.1

新增 评论置顶 功能(需要在选项中开启)

子评论支持显示被回复者昵称

同步 Highlight.js 高亮方案

其他改进与修复

20220203 v1.3.0

新增 气氛色 选项:主题色全局沉浸(类似 Material You)

新增 argon_comment_extra_info filter

代码块行号默认不透明

修复首页排除文章和 Tag 选项不生效的 Bug

修复友情链接页面显示错误

修复评论区表单验证问题

修复 session 干扰 REST API 回环问题

修复开启衬线字体后代码块显示问题

修复后台媒体库不能搜索问题

其他改进与修复

20220106 v1.2.10

新增通过 Ajax 获取验证码以绕过 CDN 缓存选项

说说预览显示赞数和评论数,优化折叠样式

修复编辑器某些功能的失效

修复评论提醒邮件格式错误

修复 Pangu.js 某些页面不应用

修复搜索结果切换筛选器后页数不重置

修复搜索结果说说预览图片不显示问题

修复 Pjax 右侧栏不刷新的问题

繁体中文翻译修正

UI 细节修复与调整

其他修复与改进

20211205 v1.2.9

增加搜索过滤器(支持搜索说说)

支持折叠过长说说

修改单篇文章过时信息显示时不覆盖最后编辑时间

其他修复与改进

20211121 v1.2.8

完善文章字数统计,新增代码行数统计和时间计算

修复字数统计问题

新增 "站点概览额外内容" 工具栏

加密文章输入密码前不获取第一张图片作为头图

修复单栏下顶栏不自动折叠的问题

修复 UI 瑕疵

其他修复与改进

20211024 v1.2.7

适配侧栏 Wordpress 归档日历

站点概览增加作者个人介绍选项

增加 AHCDN (#284)

增加 2 个 Filter (404 页面额外 HTML、Banner 标题 HTML)

归档时间轴页面增加对应年月链接

其他修复与改进

20211001 v1.2.6

优化归档时间轴页面,支持按月分节,支持左侧栏跳转和目录

适配区块左侧栏,文字头像支持全局

优化全屏封面时浮动操作栏、Pjax 等体验

Url Hash 指向的评论突出显示

优化滚动动画曲线

修复 Session 初始化问题

其他微调和修复

20210905 v1.2.5

滚动条沉浸

Banner 显示状态新增全屏选项(Banner 可全屏作为封面)

更正翻译

20210815 v1.2.4

新增 Banner 显示状态选项(新增隐藏 Banner、迷你 Banner)

新增顶栏显示状态选项 (新增顶栏不随页面滚动)

新增顶栏毛玻璃选项

优化单栏布局

修复瀑布流图片加载后排版问题

修复瀑布流布局显示错位

修复头图 Lazyload 的 BUG

20210810 v1.2.3

新增文章列表瀑布流布局

修复代码不折行的 BUG

博客副标题加入打字动画

修复标题打字动画结束后光标瞬间闪烁问题、打字动画中止问题

修复未填写邮箱时文字头像显示错误

修复夜间模式下代码块显示问题

修复夜间模式评论点赞后不显示

20210804 v1.2.2

新增评论点赞功能

增加一种文章列表卡片样式

改进阅读进度浮动按钮显示逻辑

修复 "Tab 面板" Gutenberg 组件有概率无法切换的 BUG

修复夜间模式背景不切换的 BUG

其他修复与改进

20210803 v1.2.1

增加 "Tab 面板" Gutenberg 区块

修复夜间模式的显示问题

修复 Gutenberg 编辑器区块图标不显示的问题

新增页面背景 Filter

20210724 v1.2.0

适配 Gutenberg 编辑器,支持通过编辑器可视化插入提示、警告、折叠块、时间线、Todo List 等区块

增加文章过时信息单独设置选项

更改夜间模式选择文字时的背景色

增加文章预览截取字数选项

修复与 Gutenberg 编辑器的兼容问题

其他小改动

20210706 v1.1.9

增加一种文章列表卡片样式

新增若干 Filters

修复 Gutenberg 编辑器区块的显示错误问题

支持 og-image Meta

其他 BUG 修复

20210508 v1.1.8

代码高亮增加更多默认选项

新增若干 Filters

修复相似文章 UI 细节问题

修复说说显示错误

侧栏 分类/Tag 隐藏 空分类/Tag

允许隐藏顶栏标题

修复访问统计问题

修复与 Live2D 与 Code Syntax Block 插件的兼容问题

其他 BUG 修复

20210219 v1.1.7

修复 Mathjax v2 Pjax 加载后不渲染问题

修复字数统计错误问题

更改文末推荐文章列表样式

分享功能支持只显示国内/国外/全部社交媒体

20210208 v1.1.6

修复代码行数显示错误

修复 RSS 问题

修复 REST API 错误

完善翻译

修复一些显示问题

更新 版本号

20201220 v1.1.5

文章目录聚焦时会自动滚动

适配 PHP 8

修复评论文字头像加载错误问题

修复错误

20201114 v1.1.4

修复脚注重复的问题

新增对重复脚注的处理

新增代码高亮方案

更新 Highlight.js 到 v10.4.0

20201114 v1.1.3

支持脚注短代码 (ref)

修复文章字数统计错误

修复文章目录跳转问题

修复验证码问题

UI 微调和其他改进

20201025 v1.1.2

回滚 HTML Parse 代码

修复 Fancybox 导致的一系列显示错误问题

合并移动端割裂的 UI

增加禁用 Google 字体选项

修复关闭 Lazyload 时首页文章头图无法加载的问题

20201024 v1.1.1

修复 Fancybox 可能会出现的 HTML Tag 提前闭合问题

20201018 v1.1.0

图片缩放预览库由 Zoomify 更换为 Fancybox (仍保留 Zoomify 选项)

优化评论区图片体验

修复特定屏幕尺寸下侧栏边距问题

其他优化

20201005 v1.0.4

修复手机版顶栏折叠菜单图标间距问题

设置页增加快速回顶和回底按钮

20200920 v1.0.3

修复评论回复和 Pjax 冲突

博主登录后自动填充加密文章密码

20200830 v1.0.2

增加 双栏(反转) 页面布局

修复和优化文章字数统计

20200824 v1.0.1

增加 "评论文字头像" 选项(为无头像评论者生成一个纯色文字头像)

Github 短代码新增 Mini 尺寸

20200823 v1.0.0

正式版

20200821 v0.999.beta.8

优化字数统计和预计阅读时间计算方法,中英文分别统计,并排除代码块

新增 "文章内标题样式" 选项

修复一些代码错误

评论区中表情支持放大查看

夜间模式细节优化

修复手机表情键盘溢出屏幕问题

优化 UI 细节

20200819 v0.999.beta.7

修复 WP Super Cache 和 Argon 不兼容的问题

优化左侧栏 "功能" Tab 样式

增加推荐相似文章数量选项

20200819 v0.999.beta.6

移除 V2EX Gravatar CDN 选项

增加自定义 Gravatar CDN 选项

修复 Lazyload 加载不出的 BUG

优化无头像的友情链接的显示

修复首页说说中的视频的显示问题

优化侧栏过长 Link 的显示

20200818 v0.999.beta.5

增加 "相似文章推荐" 选项

修复文章第一张图片无法作为头图的 BUG

修复文章修改时间显示错误的问题

优化赞赏二维码显示尺寸

20200817 v0.999.beta.4

增加文末附加信息选项

表情键盘支持长按预览表情

修复 Emoji 和部分表情无法输入的问题

修复回复评论时显示错误的 BUG

20200813 v0.999.beta.3

修复较深颜色作为主题色时夜间模式下的对比度问题

修复文章中 WP 引用卡片溢出问题

修复小屏幕时评论区显示重叠问题

20200812 v0.999.beta.2

评论支持发表情

增加评论区表情键盘

文章头图支持 Lazyload

修复 Lazyload 重复加载问题

修复 Wordpress 5.0 以下的兼容性问题

20200809 v0.999.beta.1

更换 Pjax 方案为 jquery-pjax 魔改后的版本 jquery-pjax-plus

解决 Pjax 一些兼容性问题,修复之前 Pjax 后退定位的 BUG

支持滚动时自动折叠顶栏(新增该设置项)

其他一些优化

20200807 v0.994

支持将文章中第一张图片设为头图,支持每篇文章单独设置和跟随全局

更改评论区 Markdown 图片解析逻辑,增强兼容性

20200806 v0.993

增加繁体中文翻译

20200805 v0.992

Add Russian Translation (By ostiwe)

增加俄文翻译

20200801 v0.991

修复 more 标签字数统计错误的问题

完善英文翻译

其他一些修改

20200729 v0.990

Add English Translation

完善英文翻译

20200728 v0.980

Add English Translation (Unfinished)

增加英文翻译(未完成)

修复图片组第一张图片加载不出的 BUG

修复折叠块中图片 Lazyload 不自动加载的 BUG

其他修改

20200713 v0.971

修 BUG

20200713 v0.970

文章 Meta 信息支持自定义是否显示和顺序

增加 fastgit 更新源

修 BUG

其他一堆更改记不清了

20200613 v0.962.1

修复折叠后评论未适配夜间模式问题

20200601 v0.962

增加过长评论自动折叠选项

修改 Lazyload、Zoomify 等的初始化方式(不再以 script 标签内联在文章中)

20200521 v0.961

新增首页隐藏特定分类文章选项

新增文章 Meta 显示作者选项

优化分类、标签和文章中的 SEO Keywords

其他小改进

20200518 v0.960

新增三栏布局模式

20200517 v0.958

评论区时间显示实时更新

优化评论区时间格式

修复判断文章是否需要目录错误的 BUG

20200511 v0.957.1

修 BUG

20200511 v0.957

支持给每篇文章插入自定义 CSS

修 BUG

20200509 v0.956.1

修复首页说说图片宽度溢出的问题

20200509 v0.956

修复首页显示的说说不显示图片的 BUG

修复夜间模式切换的一个 BUG

20200503 v0.955

404 页适配夜间模式和暗黑模式

侧栏菜单适配新标签页打开选项

支持可选的加密文章密码提示 (新建名为 password_hint 的 Meta 项)

修复说说标题过长溢出问题

20200501 v0.954

增加 "美化登录界面" 选项 (Wordpress 登录界面 Argon Design 化)

修复 QQ 号获取的头像在后台显示异常问题

20200429 v0.953

增加评论根据 QQ 号获取头像选项

修复单行代码高亮的复制等问题

修复代码块复制错误的 BUG

调整代码块过大的边距

20200425 v0.951

经典编辑器中增加插入代码块按钮和短代码快捷按钮

优化代码高亮

适配图片说明

20200424 v0.950

内置 Highlight.js 代码高亮

Mac 风格

支持行号

支持复制代码、切换行号显示、切换自动折行、全屏

20200418 v0.944

增加默认字体选项

增加默认阴影大小选项

修复文章过时信息时差问题

20200413 v0.943.1

修复 Pjax 的一个问题

20200412 v0.943

增加归档时间轴页面模板

侧栏格言支持调用一言 API

增加对 Wordpress 子目录安装方式的兼容性适配选项

修复和 Prism.js 的一个兼容性问题

修复侧栏图标不对齐问题

20200411 v0.941

修复评论 UA 图标错误的 BUG

修复评论编辑历史记录显示错误的 BUG

20200409 v0.940

新增评论区 UA 显示选项

新增 Katex 数学解析方案

20200407 v0.931

修复新旧版本 Parsedown 类库冲突的问题

修复小 BUG

20200405 v0.930

左侧栏顶部菜单支持无限层级嵌套子菜单

20200404 v0.925

Github 短代码增加可选的后端获取模式

修复 "暗化" 滤镜不生效的问题

20200403 v0.924

修复顶栏菜单 "在新标签页打开" 选项不生效的 BUG

20200401 v0.923

修复设置顶栏图标后手机端排版的问题

20200331 v0.922

修复评论编辑历史记录时间显示错误的问题

20200330 v0.921

修复评论编辑历史记录的 BUG

优化搜索逻辑

20200330 v0.920

增加查看评论编辑历史记录功能

增加 "谁可以查看评论编辑记录" 选项

赞赏二维码弹框移到赞赏按钮上方

修复分类中文章总数统计错误的 BUG

20200326 v0.914

修复评论相关的一些小 BUG

20200325 v0.913

夜间模式时间调整 (21:00 改为 22:00)

修复小问题

20200324 v0.912

增加 Pangu.js 文本格式化选项

需要密码的文章支持 Ajax 加载

20200323 v0.911

增加单栏模式

20200322 v0.910

评论区支持分页

新增 "无限加载" 和 "页码" 两种评论分页方式

重写评论模块代码

评论发送后改为局部刷新评论区

优化评论/编辑体验

优化其他一堆细节

20200321 v0.902

新增新的友情链接短代码

友情链接改为从 Wordpress 链接管理器中读取

启用 Wordpress 链接管理器

旧的友情链接短代码改名为 sfriendlinks

评论会自动填充上一次的姓名、邮箱、网站输入框的内容

增加 "评论时默认勾选 '启用邮件通知'' 复选框" 选项

文章设置新增 "隐藏文章发布时间和分类" 选项

更改说说文章页面 URL

⚠ 在该版本中,友情链接改为从 Wordpress 链接管理器中读取。请将友情链接迁移至 Wordpress 链接管理器中,或将原先的友链短代码改为 sfriendlinks。

20200319 v0.901

评论通知邮件支持退订

优化评论通知发送邮件逻辑

评论 Markdown 增加对标题、有序列表和无序列表的支持

手机端 UI 微调

优化手机端交互体验微调

修了评论的一堆 BUG

20200318 v0.900

评论允许发送者再次编辑(可选)

评论增加悄悄话模式(可选)

评论增加回复时邮件通知模式(可选)

优化文章访问量统计逻辑

其他的一些优化和调整

20200315 v0.891

修 BUG

20200315 v0.890

Argon 设置增加 导入/导出 功能

新增日间/夜间模式不同背景选项

新增 Banner 标题打字动画选项

增加 jsdelivr 更新源

修复一个重大 BUG

20200314 v0.885

新增文章过时信息提示选项

增加在浮动按钮栏显示跳到评论区按钮选项

增加 Banner 遮罩和 Banner 标题阴影选项

修复手机上的一系列小问题

略微优化后台设置界面

20200310 v0.884

增加夜间模式的另一种配色: 暗黑 (AMOLED Black)

修复夜间模式相关的 BUG

20200309 v0.883

修复过渡动画的一个问题

20200309 v0.882

修复首页显示说说选项开启后,置顶文章不能正常显示的 BUG

20200309 v0.881

修 BUG

20200309 v0.880

增加夜间模式切换方案 (默认日间/默认夜间/跟随系统自动切换/根据时间自动切换)

优化性能

修 BUG

20200308 v0.873

优化侧栏的搜索体验

修复 Safari 上的渲染问题

20200306 v0.872

修复 Safari 上的一系列显示问题

修复点击导航栏时高度跳动的 BUG

略微优化性能

20200306 v0.871

BUG 修复

20200306 v0.870

优化顶栏搜索体验,将搜索框嵌入导航栏中,同时搜索支持 Pjax

增加首页文章和说说同时显示的选项

修复 Safari 上的一个性能问题

增加评论禁用 Markdown 选项

优化手机端阅读体验

手机端浮动按钮增加透明度

修复偶现的 Tooltip 乱码问题

修复手机点击导航栏链接菜单不会自动关闭的问题

修复其他小问题

20200303 v0.860

编辑文章界面侧栏增加 "隐藏字数及阅读时间提示 Meta 信息" 选项

优化夜间模式相关逻辑

修复赞赏二维码的显示和过渡动画问题

增加禁用 Pjax 选项

修复 BUG

20200229 v0.852

友情链接短代码增加随机顺序可选参数

20200228 v0.851

修复手机端侧栏的一系列问题

优化开启公告时手机端的显示效果

优化手机端评论区的阅读体验

增加 noshortcode 短代码

优化浮动操作按钮菜单中恢复默认圆角大小按钮的提示

20200225 v0.850

Argon 选项中增加自定义默认卡片圆角大小设置

浮动操作按钮菜单中增加了自定义圆角大小滑块

优化评论区图片打开的动画曲线

微调 UI 细节

修复代码块和某些插件样式冲突的问题

20200223 v0.845

修复以前手滑遗留的在新标签页打开问题

20200222 v0.844

默认显示页脚作者信息,在 Argon 设置中增加了隐藏页脚作者信息的选项

20200222 v0.843

修复顶栏二级菜单点击时菜单项高度跳动的 BUG

细节修复

删除页脚作者信息,只保留主题名称和链接

20200219 v0.842

添加 Mathjax 2,现在有 Mathjax 3 和 2 两个版本可以选择

20200217 v0.841

增加 "留言板" 页面模板

修复浮动操作按钮与 Font Awesome 5 的类名冲突兼容问题

修复夜间模式的一个小 BUG

进一步完善 Pjax 逻辑

20200215 v0.840

修复开启 "评论作者必须填入姓名和电子邮件地址" 选项后未填写名称无法发送评论的错误

增加隐藏发送评论区中 "作者名称"、"邮件"、"网站" 输入框的选项

增加禁用评论验证码的选项

修复 Pjax 的几个 BUG

完善 Pjax 逻辑,实现了近乎完美的 Pjax 体验

增加 "博客 Banner 副标题" 设置选项,显示在 Banner 标题下方

优化手机端有头图的博文的显示效果

修复暗色滤镜与背景冲突的 BUG

完善了手机端夜间模式的适配

加入 "暂停更新" 选项,位于 "检测更新源" 选项中

加入了 "博文发布时间"、"博文最后修改时间" 短代码

一系列微调和优化

20200210 v0.830

增加评论区 Markdown 支持

优化夜间模式在页面刚载入时的体验

20200206 v0.820

增加博客背景图片设置选项

增加 沉浸式 Banner (透明) 和 毛玻璃 Banner 选项 来增强背景图片的显示效果

20200205 v0.810

BUG 修复

20200128 v0.800

大幅提升前端加载速度

SEO 优化

增加 SEO Description Meta 标签和 Keywords Meta 标签设置选项

增强页面可访问性,优化无障碍体验

修复一些问题

针对打印进行优化

20200125 v0.703

Github 用户名更换适配

20200125 v0.702

修复图片全屏预览选项关闭后无效的 BUG

20200123 v0.701

修复不显示自定义主题色选择器时 js 的执行错误

20200123 v0.700

增加前端自定义主题色功能(用户在浮动操作按钮博客设置菜单中可自定义主题色)

问题修复

20200121 v0.610

重构切换主题功能

修复 CSS 的一堆问题

修复 Pjax 带 target="blank" 属性的 a 标签在本页打开的问题

一些小改进

20200116 v0.601

进一步适配主题色 (如滚动条颜色,a 标签下划线颜色等)

20200116 v0.600

增加博客主题色选项,可自定义主题色

增加 SEO Meta 标签

修复 Pjax 的一个 BUG

20200105 v0.597

修复之前没发现的一个无关紧要的小问题

20200104

更改协议为 GPL V3.0

20191231 v0.596

修复设置界面的小问题

20191221 v0.595

平滑滚动增加脉冲式滚动的选项 (Edge 式滚动)

20191216 v0.594

Argon 后台设置增加浮动目录

增加文章目录显示序号选项

修复左侧栏 Tab 的显示问题

修复左侧栏浮动时在特定屏幕尺寸下的显示问题

20191214 v0.593

博客设置增加阴影选项

修复界面的一些问题

修复其他的一些小问题

升级 Argon 框架到 1.1.0 版本

20191214 v0.592

加入博客设置功能

位于浮动操作按钮栏

设置选项:夜间模式、字体(衬线/无衬线)、页面滤镜

默认关闭浮动操作按钮栏的夜间模式切换按钮(与设置菜单中重复),可以在 Argon 设置中手动开启

微调 CSS

其他小改动

20191204 v0.591

增加进入文章过渡动画选项(测试)

20191111 v0.590

增加博客公告功能

20191107 v0.582

修复未开启 Mathjax 选项时 Pjax 错误的问题

20191104 v0.581

支持切换主题更新源

修复 CSS 一个小问题

20191104 v0.58

优化设置页面

修复评论框高度错误问题

20191029 v0.57

增加 题图(特色图片) 的支持

20191026 v0.56

提升 Mathjax 版本到 3.0

更换默认 Mathjax CDN

允许自定义 Mathjax CDN

修复由于 Mathjax 文件未加载成功导致 Pjax 错误的问题

20191023 v0.55

修复手机端侧栏的小问题

提升后台管理中"Argon 主题选项"菜单层级

采用新的检测更新库,修复更新问题

其他细节调整

20191017 v0.54

修改手机端侧栏效果

合并 CSS 文件

细节微调

修改加密博客阅读量统计逻辑

20191014 v0.53

增加赞赏二维码选项

增加视频短代码

修改 Pjax 逻辑

增加首页文章浏览不显示短代码选项

修复夜间模式的一个小问题

20191013 v0.52

增加安装统计

增加时区修复

20191012 v0.51

"说说"增加点赞功能

微调弹出提示的样式

20191010 v0.5

增加 "说说" 功能

增加 Github Repo 信息短代码

细节修改

20190923 v0.4

如果某个菜单没配置,会默认隐藏,不再会影响观感

修复了检测更新的一个问题

增加"隐藏文字"短代码,在鼠标移上时才会显示

修复图片放大模糊的问题

Banner 支持必应每日一图

适配 Android Chrome Toolbar 颜色

待审核评论会打上标签提示发送者

修复 Pjax 加载后评论框大小不随内容调整的 BUG

夜间模式全屏放大图片图片颜色不会变暗了

修复了 CSS 的一些问题

修复其他一些小问题

20190907 v0.31

修复调试时遗留下来的一个 BUG

20190904 v0.3

Pjax 加载时替换 WordPress Adminbar

修复后台评论提示验证码错误问题

手机减小文章页面 margin

Pjax 加载逻辑修改

博主评论免验证码

20190829 v0.2

修复一些 BUG

checkbox 增加可选的 inline 属性

针对 Wordpress 管理条进行处理

修复夜间模式的一些问题

修改一些细节

捐赠

如果你觉得 Argon 主题不错,可以请我一杯咖啡来支持我的开发。

About

Argon - 一个轻盈、简洁的 WordPress 主题

solstice23.top/argon

Topics

theme

wordpress

wordpress-theme

pjax

customizable

argon

argon-theme

Resources

Readme

License

GPL-3.0 license

Activity

Stars

4.2k

stars

Watchers

28

watching

Forks

503

forks

Report repository

Releases

157

v1.3.5

Latest

Mar 18, 2022

+ 156 releases

Sponsor this project

patreon.com/solstice233

https://github.com/solstice23/argon-theme#%E6%8D%90%E8%B5%A0

Packages

0

No packages published

Contributors

19

+ 5 contributors

Languages

PHP

91.7%

JavaScript

8.3%

Footer

© 2024 GitHub, Inc.

Footer navigation

Terms

Privacy

Security

Status

Docs

Contact

Manage cookies

Do not share my personal information

You can’t perform that action at this time.

Argon | Properties, Uses, Atomic Number, & Facts | Britannica

Argon | Properties, Uses, Atomic Number, & Facts | Britannica

Search Britannica

Click here to search

Search Britannica

Click here to search

Login

Subscribe

Subscribe

Home

Games & Quizzes

History & Society

Science & Tech

Biographies

Animals & Nature

Geography & Travel

Arts & Culture

Money

Videos

On This Day

One Good Fact

Dictionary

New Articles

History & Society

Lifestyles & Social Issues

Philosophy & Religion

Politics, Law & Government

World History

Science & Tech

Health & Medicine

Science

Technology

Biographies

Browse Biographies

Animals & Nature

Birds, Reptiles & Other Vertebrates

Bugs, Mollusks & Other Invertebrates

Environment

Fossils & Geologic Time

Mammals

Plants

Geography & Travel

Geography & Travel

Arts & Culture

Entertainment & Pop Culture

Literature

Sports & Recreation

Visual Arts

Companions

Demystified

Image Galleries

Infographics

Lists

Podcasts

Spotlights

Summaries

The Forum

Top Questions

#WTFact

100 Women

Britannica Kids

Saving Earth

Space Next 50

Student Center

Home

Games & Quizzes

History & Society

Science & Tech

Biographies

Animals & Nature

Geography & Travel

Arts & Culture

Money

Videos

argon

Table of Contents

argon

Table of Contents

Introduction

References & Edit History

Quick Facts & Related Topics

Images

For Students

argon summary

Quizzes

118 Names and Symbols of the Periodic Table Quiz

Facts You Should Know: The Periodic Table Quiz

Related Questions

Is mathematics a physical science?

Read Next

16 Questions About Earth’s Atmsophere and Weather Answered

How Do You Balance a Chemical Equation?

Why Is a Group of Molecules Called a Mole?

Gravity: From Apples to the Universe

Discover

7 of History's Most Notorious Serial Killers 

12 Greek Gods and Goddesses

9 of the World’s Deadliest Snakes

Inventors and Inventions of the Industrial Revolution

Ten Days That Vanished: The Switch to the Gregorian Calendar

Did Marie-Antoinette Really Say “Let Them Eat Cake”?

How Many Electoral College Votes Does Each U.S. State Have?

Home

Science

Chemistry

Science & Tech

argon

chemical element

Actions

Cite

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.

Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

MLA

APA

Chicago Manual of Style

Copy Citation

Share

Share

Share to social media

Facebook

Twitter

URL

https://www.britannica.com/science/argon-chemical-element

Give Feedback

External Websites

Feedback

Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).

Feedback Type

Select a type (Required)

Factual Correction

Spelling/Grammar Correction

Link Correction

Additional Information

Other

Your Feedback

Submit Feedback

Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

Nature - Chemistry - Argon out of thin air

National Center for Biotechnology Information - PubMed Central - Argon: The Future Organ Protectant?

Royal Society of Chemistry - Argon

Lenntech - Argon - Ar

LiveScience - Facts About Argon

Britannica Websites

Articles from Britannica Encyclopedias for elementary and high school students.

argon - Student Encyclopedia (Ages 11 and up)

Print

Cite

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.

Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

MLA

APA

Chicago Manual of Style

Copy Citation

Share

Share

Share to social media

Facebook

Twitter

URL

https://www.britannica.com/science/argon-chemical-element

Feedback

External Websites

Feedback

Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).

Feedback Type

Select a type (Required)

Factual Correction

Spelling/Grammar Correction

Link Correction

Additional Information

Other

Your Feedback

Submit Feedback

Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

Nature - Chemistry - Argon out of thin air

National Center for Biotechnology Information - PubMed Central - Argon: The Future Organ Protectant?

Royal Society of Chemistry - Argon

Lenntech - Argon - Ar

LiveScience - Facts About Argon

Britannica Websites

Articles from Britannica Encyclopedias for elementary and high school students.

argon - Student Encyclopedia (Ages 11 and up)

Also known as: Ar

Written and fact-checked by

The Editors of Encyclopaedia Britannica

Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.

The Editors of Encyclopaedia Britannica

Last Updated:

Feb 29, 2024

Article History

Table of Contents

argon

See all media

Category:

Science & Tech

Key People:

Sir William Ramsay

Lord Rayleigh

(Show more)

Related Topics:

chemical element

noble gas

air

argon-40

(Show more)

See all related content →

argon (Ar), chemical element, inert gas of Group 18 (noble gases) of the periodic table, terrestrially the most abundant and industrially the most frequently used of the noble gases. Colourless, odourless, and tasteless, argon gas was isolated (1894) from air by the British scientists Lord Rayleigh and Sir William Ramsay. Henry Cavendish, while investigating atmospheric nitrogen (“phlogisticated air”), had concluded in 1785 that not more than 1/120 part of the nitrogen might be some inert constituent. His work was forgotten until Lord Rayleigh, more than a century later, found that nitrogen prepared by removing oxygen from air is always about 0.5 percent more dense than nitrogen derived from chemical sources such as ammonia. The heavier gas remaining after both oxygen and nitrogen had been removed from air was the first of the noble gases to be discovered on Earth and was named after the Greek word argos, “lazy,” because of its chemical inertness. (Helium had been spectroscopically detected in the Sun in 1868.)In cosmic abundance, argon ranks approximately 12th among the chemical elements. Argon constitutes 1.288 percent of the atmosphere by weight and 0.934 percent by volume and is found occluded in rocks. Although the stable isotopes argon-36 and argon-38 make up all but a trace of this element in the universe, the third stable isotope, argon-40, makes up 99.60 percent of the argon found on Earth. (Argon-36 and argon-38 make up 0.34 and 0.06 percent of Earth’s argon, respectively.) A major portion of terrestrial argon has been produced, since the Earth’s formation, in potassium-containing minerals by decay of the rare, naturally radioactive isotope potassium-40. The gas slowly leaks into the atmosphere from the rocks in which it is still being formed. The production of argon-40 from potassium-40 decay is utilized as a means of determining Earth’s age (potassium-argon dating).

Britannica Quiz

Facts You Should Know: The Periodic Table Quiz

Argon is isolated on a large scale by the fractional distillation of liquid air. It is used in gas-filled electric light bulbs, radio tubes, and Geiger counters. It also is widely utilized as an inert atmosphere for arc-welding metals, such as aluminum and stainless steel; for the production and fabrication of metals, such as titanium, zirconium, and uranium; and for growing crystals of semiconductors, such as silicon and germanium.Argon gas condenses to a colourless liquid at −185.8 °C (−302.4 °F) and to a crystalline solid at −189.4 °C (−308.9 °F). The gas cannot be liquefied by pressure above a temperature of −122.3 °C (−188.1 °F), and at this point a pressure of at least 48 atmospheres is required to make it liquefy. At 12 °C (53.6 °F), 3.94 volumes of argon gas dissolve in 100 volumes of water. An electric discharge through argon at low pressure appears pale red and at high pressure, steely blue.

The outermost (valence) shell of argon has eight electrons, making it exceedingly stable and, thus, chemically inert. Argon atoms do not combine with one another; nor have they been observed to combine chemically with atoms of any other element. Argon atoms have been trapped mechanically in cagelike cavities among molecules of other substances, as in crystals of ice or the organic compound hydroquinone (called argon clathrates).

Get a Britannica Premium subscription and gain access to exclusive content.

Subscribe Now

Element Propertiesatomic number18atomic weight[39.792, 39.963]melting point−189.2 °C (−308.6 °F)boiling point−185.7 °C (−302.3 °F)density (1 atm, 0° C)1.784 g/litreoxidation state0electron config.1s22s22p63s23p6 The Editors of Encyclopaedia Britannica This article was most recently revised and updated by Amy Tikkanen.

ARGON中文(简体)翻译:剑桥词典

ARGON中文(简体)翻译:剑桥词典

词典

翻译

语法

同义词词典

+Plus

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录

/

注册

中文 (简体)

查找

查找

英语-中文(简体)

argon 在英语-中文(简体)词典中的翻译

argonnoun [ U ] uk

Your browser doesn't support HTML5 audio

/ˈɑː.ɡɒn/ us

Your browser doesn't support HTML5 audio

/ˈɑːr.ɡɑːn/ (symbol Ar)

Add to word list

Add to word list

a chemical element that is a gas found in air. Argon does not react with other elements and is sometimes used to make electric lights.

(argon在剑桥英语-中文(简体)词典的翻译 © Cambridge University Press)

argon的例句

argon

Figure 9a shows the optical micrograph of the untreated surface for the tracks of laser-induced plasma ions of argon with conical shape.

来自 Cambridge English Corpus

These are considered geologically significant, and are interpreted to date the last cooling through temperatures required for intracrystalline argon retention.

来自 Cambridge English Corpus

To avoid any interference from oxygen all the irradiation experiments were conducted under continuous flow of argon gas into the reaction medium.

来自 Cambridge English Corpus

The latter is consistent with the saddle-shaped spectra, which suggest the presence of excess argon.

来自 Cambridge English Corpus

Because hot argon emits light in a broad spectrum, one may choose a dye laser with a large number of upper laser level states.

来自 Cambridge English Corpus

The argon gas discharge takes place between two parallel circular electrodes enclosed in a cylindrical chamber.

来自 Cambridge English Corpus

Operational improvement of the high-pressure argon-mercury test lamp are considered with respect to the continuum spectrum in the visible wavelength range.

来自 Cambridge English Corpus

It shows reshaping of argon ions with diffraction pattern and broken chains.

来自 Cambridge English Corpus

示例中的观点不代表剑桥词典编辑、剑桥大学出版社和其许可证颁发者的观点。

C1

argon的翻译

中文(繁体)

氬…

查看更多内容

西班牙语

argón…

查看更多内容

葡萄牙语

argônio, árgon…

查看更多内容

更多语言

波兰语

土耳其语

argon…

查看更多内容

elektrikli ışıklarda kullanılan, diğer madddelerle tepkime vermeyen bir gaz, argon gazı…

查看更多内容

需要一个翻译器吗?

获得快速、免费的翻译!

翻译器工具

argon的发音是什么?

在英语词典中查看 argon 的释义

浏览

argan oil

argent

Argentina

Argentinian

argon

argot

arguable

arguably

argue

“每日一词”

veggie burger

UK

Your browser doesn't support HTML5 audio

/ˈvedʒ.i ˌbɜː.ɡər/

US

Your browser doesn't support HTML5 audio

/ˈvedʒ.i ˌbɝː.ɡɚ/

a type of food similar to a hamburger but made without meat, by pressing together small pieces of vegetables, seeds, etc. into a flat, round shape

关于这个

博客

Forget doing it or forget to do it? Avoiding common mistakes with verb patterns (2)

March 06, 2024

查看更多

新词

stochastic parrot

March 04, 2024

查看更多

已添加至 list

回到页面顶端

内容

英语-中文(简体)例句翻译

©剑桥大学出版社与评估2024

学习

学习

学习

新词

帮助

纸质书出版

Word of the Year 2021

Word of the Year 2022

Word of the Year 2023

开发

开发

开发

词典API

双击查看

搜索Widgets

执照数据

关于

关于

关于

无障碍阅读

剑桥英语教学

剑桥大学出版社与评估

授权管理

Cookies与隐私保护

语料库

使用条款

京ICP备14002226号-2

©剑桥大学出版社与评估2024

剑桥词典+Plus

我的主页

+Plus 帮助

退出

词典

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

翻译

语法

同义词词典

Pronunciation

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录 /

注册

中文 (简体)  

Change

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

中文 (简体)

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

हिंदी

தமிழ்

తెలుగు

关注我们

选择一本词典

最近的词和建议

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

语法与同义词词典

对自然书面和口头英语用法的解释

英语语法

同义词词典

Pronunciation

British and American pronunciations with audio

English Pronunciation

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

词典+Plus

词汇表

选择语言

中文 (简体)  

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

हिंदी

தமிழ்

తెలుగు

内容

英语-中文(简体) 

 Noun

例句

Translations

语法

所有翻译

我的词汇表

把argon添加到下面的一个词汇表中,或者创建一个新词汇表。

更多词汇表

前往词汇表

对该例句有想法吗?

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

科学网—【中文维基百科】第一个被发现的稀有气体——氩 - 李中平的博文

科学网—【中文维基百科】第一个被发现的稀有气体——氩 - 李中平的博文

注册

|登录

构建全球华人科学博客圈

返回首页

微博

RSS订阅

帮助

气体●同位素地球化学分享

http://blog.sciencenet.cn/u/lzp630 致力于传播和普及气体地球化学和同位素地球化学知识,提高公众的科学素养,让公众了解和关注地球科学领域的发展和挑战!

博客首页

动态

博文

视频

相册

好友

留言板

首页 新闻 博客 人才 会议 基金 论文 视频 小柯机器人 相册Album 帮助Help

粉丝

评论

@我

提醒

我的博客

博文

【中文维基百科】第一个被发现的稀有气体——氩

已有 2926 次阅读

2023-5-3 09:13

|个人分类:地球科学|系统分类:科普集锦

  氩(Argon),是一种化学元素,化学符号为Ar,原子序数为18,原子量为39.948 u,位在周期表的第18族,是一种稀有气体[2]。氩占大气体积的0.934%(9340 ppmv),是地球大气层第三多的气体,是水蒸气的两倍以上(平均4000 ppmv左右,但变化很大)、二氧化碳(400 ppmv)的23倍之多、氖(18 ppmv)的500倍以上。氩是地壳含量中最丰富的惰性元素,在地壳中占了0.00015%。[3]   已知的氩的同位素共有25种,其中氩36、氩38和氩40三种是稳定同位素,地球大气中大部分的氩元素是氩-40(由地壳中的钾-40衰变而来)。氩-36是宇宙中最为常见的氩同位素,因为它是最容易由超新星核聚变产生的产物。"argon"这个名称源自于希腊语中的 ἀργόν,意思是“懒惰的”、“不活跃的”,如此命名是因为这个元素几乎不进行化学反应。氩在原子外部壳层完整的八隅体(8个电子)让它变得更加稳定,也不容易与其它元素产生键结。它的三相点以国际实用温标定义为83.8058K。氩元素在工业制程上是借由液态空气分馏而得。氩常常作为遮气体,应用在焊接或是其他可以增加物质反应能力的高温工业制程。例如,在石墨电炉中加入氩气以防止石墨燃烧。氩气也用于白炽灯、萤光灯、其他气体放电管和萤光辉光启动器。氩在被激发后可放出青色的气体激光。  氩的原子光谱1.氩的发现历史氩(来自希腊语ἀργόν,带有懒惰或无效的意思),命名是参考它的化学活性。这个第一个被发现的稀有气体的化学性质令命名者印象深刻。[4][5]1785年,亨利·卡文迪什怀疑稀有气体是组成大气的一部分气体。1894年,在伦敦大学学院, 约翰·斯特拉特,第三代瑞利男爵和威廉·拉姆齐透过移除了氧气、二氧化碳、水以及氮的干净空气样本,使氩第一次从空气里被隔绝出来。[6][7][8] 他们已经确认从化学化合物生成的氮比大气中的氮还要轻0.5%,差异细微,但已足够重要吸引他们的注意力好几个月。他们做出了结论:空气中还有另一种气体与氮气混和在一起。[9]氩气在1882年也被H. F. Newall和沃尔特·诺尔·赫特利的研究偶然发现。他们发现新的发射光谱,并没有符合在当时已经知道的元素。 直到1957年,氩的化学符号一直是"A",之后被改为"Ar"到现在。[10]2.氩的特性氩,是一种稀有气体。无论是气态还是液态,都是无色、无味而且无毒。它在水中的溶解度比氮多出了2.5倍。虽然氩在一般的情况下都很稳定,不会与其它化合物或元素化合,但是科学家还是有办法在极端的条件下形成一些氩化合物,像是2000年8月由芬兰化学家马库·拉萨能(Markku Räsänen)领导的小组发现的氟氩化氢。这个氟、氢和氩的化合物在−265°C才能保持稳定。[11]此外,氩还可以作为客体分子,与水形成包合物。[12]除了以上基态的物质外,目前已经发现含氩的离子和激发态配合物(像ArH+和ArF),而根据理论计算显示氩应该可以形成在室温下稳定的化合物,虽然目前还没有发现它们存在的线索。[13] 氩气常被注入灯泡内,因为氩即使在高温下也不会与灯丝发生化学作用,从而延长灯丝的寿命。[14]在不锈钢、锰、铝、钛和其它特种金属电弧焊接时、钢铁生产时,氩也用作保护气体。[来源请求]3.氩的发现  氩曾经在1785年由亨利·卡文迪什制备出来,但却没发现这是一种新的元素;直到1894年,约翰·斯特拉斯和苏格兰的化学家威廉·拉姆齐才通过实验确定氩是一种新元素。[15][16]他们主要是先从空气样本中去除氧、二氧化碳、水汽等后得到的氮气与从氨分解出的氮气比较,结果发现从氨里分解出的氮气比从空气中得到的氮气轻1.5%。虽然这个差异很小,但是已经大到误差的范围之外。所以他们认为空气中应该含以一种不为人知的新气体,而那个新气体就是氩气。另外1882年H.F. 纽厄尔和W.N.哈特莱从两个独立的实验中观测空气的颜色光谱时,发现光谱中存在已知元素光谱无法解释的谱线,但并没有意识到那就是氩气。由于在自然界中含量很多,氩是最早被发现的稀有气体。左图: 威廉·拉姆齐爵士(Sir William Ramsay)是一位苏格兰化学家,他发现了惰性气体,并因其在发现空气中惰性气体元素方面的贡献,1904年与他的合作者瑞利勋爵获得了诺贝尔化学奖。在两人发现了氩之后,拉姆齐研究了其他大气气体。他在分离氩、氦、氖、氪和氙方面的工作,导致了周期表新的发展。右图:瑞利是一位英国数学家和物理学家,获得了许多荣誉,其中包括1904年因“对重要气体的密度进行研究并在这些研究中发现氩元素”的贡献而获得的诺贝尔物理学奖。他曾担任皇家学会主席(1905-1908)和剑桥大学校长(1908-1919)。瑞利供了弹性散射现象中的第一个理论模型,即现在被称为“瑞利散射”的模型,它明确地解释了天空为什么是蓝色的。瑞利的教科书《声学理论》(1877年)至今仍被声学家和工程师使用。4.天然含量氩在地球大气中的含量以体积计算为0.934%,而以质量计算为1.29%,在地壳中,由于氩在自然情况下不与其他化合物反应,而无法形成固态物质,但可以被“困在”放射性岩石中。鉴于空气中的氩更易得,工业用的氩大多就直接从空气中提取。主要是用分馏法提取,而像是氮、氧、氖、氪、氙等气体也都是这样从空气中提取的。 [18] 而在火星的大气中,氩-40以体积计算的话占有1.6%,而氩-36的浓度为5ppm;另外1973年水手号计划的太空探测器飞过水星时,发现它稀薄的大气中占有70%氩气,科学家相信这些氩气是从水星岩石本身的放射性同位素衰变而成的。卡西尼-惠更斯号在土星最大的卫星,也就是泰坦上,也发现少量的氩。[19]5.同位素氩的稳定同位素为氩36、氩38和氩40三种是稳定同位素,其自然丰度分别为0.337%、0.063%和99.60%。一般来说,氩-40是由地球的岩石中的钾-40通过电子俘获或正子发射衰变而来。11.2%的钾-40以这两种方式衰变成氩-40,其余88.8%通过β衰变成为钙-40。这个特性可以用来测定岩石的年龄。 最早发现的氩同位素是氩-40,这种气体常存在于熔岩和岩石中,这是由于氩40会衰变成另一种元素钾40,因为这个过程需要很长时间,大约需要12.5亿年才将一半的钾转化为氩,这一过程称为放射性衰变。科学家们用这种方法来研究测量地球的年龄,所以如果我们知道岩石中钾和氩的含量,就可以计算岩石的年龄,这种方法叫做钾氩测年法(K-Ar dating)。在地球大气中,氩-39是一种不稳定的同位素,可以通过宇宙射线轰击氩-40或钾-39的中子俘获而来。氩-37则是一种非常不稳定的同位素,可以从核试验中形成的钙的人造同位素衰变而来,其半衰期只有35天。6.化合物由于氩气拥有的八个价电子,占满了其原子轨道的最外层,因此不容易与其他的原子结合,化学性质非常不活泼。在1962年以前,一般认为氩和其他的稀有气体是完全无法与其他物质产生化学反应,但不久之后比氩重的氙和氪的化合物就陆续被合成,因此也激励了科学家发现新的稀有气体化合物。1982年在星际空间探测到氩氢离子,是氩的一种多原子离子。[21]在2000年8月,第一个氩的化合物在芬兰的赫尔辛基大学由马库·拉萨能领导的小组首先被制备出来,他们利用紫外线照射含有微量氟化氢的氩气冰块,形成了氟氩化氢,分子式为HArF,这种化合物可以在40K(−233℃)的低温下保持稳定。[22]另外在2003年发现了一种新氩化合物存在的踪迹,二氟化氩(ArF2)[来源请求],但目前还没有任何可靠的证据可以证实。7.制备目前在工业上得到氩的方法就是把空气蒸馏。用冷凝器可以先把沸点90.2K的氧液化,移除液氧之后继续冷却就可以液化沸点为87.3K的氩气,最后留下沸点77.35K的氮气。目前以这种方法制造的氩气在全世界高达七十万吨/年。[23] 另外用钾-40的衰变也可以制造氩气,但这种制备法的效率并不高,因为钾-40的半衰期长达1.26×109年,所以并不常用。如果要制造氩的放射性同位素的话,就必须要靠回旋加速器和重离子加速器来将其他元素转换成氩的同位素。8. 用途装有氩和汞蒸气的霓虹灯。这些桶子里装有氩气,可用于灭火。因为氩气具有惰性、低传热率等性质,因此它被广泛地运用在许多方面。[24]氩气最主要的用处就是它的惰性,可以保护一些容易与周遭物质发生反应的东西。[24]虽然其他的稀有气体也有这些特性,但是氩气在空气中的含量最多,也是最容易取得,因此相对就比较便宜,具有经济效益。另外氩气便宜的原因还有它是制造液氧和液氮的副产品,而由于它们两个都是工业上重要的原料,生产很多,所以每年都有很多的液氩副产品。  电灯泡里的填充气体,由于氩气不会与灯芯产生化学反应,而又能保持气压减缓钨丝升华,可延长灯丝使用寿命。氩可当作焊接时所用的保护气体,其中包括MIG焊接、GTA焊接与GMA焊接等,在这时氩通常会和二氧化碳混合在一起使用。[25]可用于灭火,用氩气灭火的好处是几乎不会破坏任何火场的物品,通常使在火场有特殊仪器时才使用。是用于感应耦合等离子体的气体之一。[26]用于保护加工中的钛和其他容易发生反应的金属:例如铷 和铯 。保护成长中的硅晶体和锗晶体,这晶体主要用于半导体学。在博物馆里,会在一些重要文物的玻璃专柜里填充氩气,避免氧化。[27]在啤酒罐中的填充物,虽然也可以用氮气代替。在酿酒的过程中,啤酒桶里的填充物,它可以把氧气置换,以避免啤酒桶里的原料被氧化成乙酸。在药学里,氩可以用于保护一些静脉内的治疗的药物,举个例子,像是对乙酰氨基酚。   一样的,这也是防止药物受到氧气的破坏。用于冷却AIM-9响尾蛇导弹的追踪器,氩当时都是以高压储存,然后当释放气体后就可以带走一些热量。[28]为石墨电熔炉中的保护气体,以免它被氧化。广告用的霓虹灯里,有时也会加入氩气,加了氩气的霓虹灯管,白天看起来是无色透明的,一旦通电后,氩气受到电的刺激,会放出青色的光芒。氩气的低传热率也是它的特性之一,像它可以作为隔热窗户中两层玻璃之间的填充物。[29] 因为氩的低传热率和惰性,氩气在水肺潜水可以用来作为膨胀潜水衣的气体。氩气还可以在水肺中代替氮气(吸收纯氧对身体不好,因此水肺中要添加其他气体),因为氮气在高压下会溶进血液里而造成氮麻醉,氩气则可以减轻这种症状(虽然一般来说,稀有气体也会造成这种症状)。[30]使用特定的方法可以使氩气离子化并且发光,这种功能可用于等离子体灯和粒子物理学中的能量器。以氩作成的氩激光会发出蓝光,它在医学外科中可用于连接动脉、去除肿瘤和治疗眼睛的缺陷等。[31]氩气还可以用于溅镀。另外氩-39有269年的半衰期,可以用于测定地下水和冰层的年龄,而钾-氩年代测定法适用钾-40衰变成氩-40的过程来用于测定火成岩的年龄。[32]9.危害一般来说,氩气是对身体毫无危害的,但是如果长期暴露在高浓度的氩气中会因为缺氧而窒息,液态氩则可能造成爆炸及冻伤。[33](本文主要参考资料主要为维基百科——氩)文中所列的参考资料: Magnetic susceptibility of the elements and inorganic compounds 互联网档案馆的存档,存档日期2012-01-12., in Handbook of Chemistry and Physics 81st edition, CRC press. ,archive-web,archive-is^ In older versions of the periodic table, the noble gases were identified as Group VIIIA or as Group 0. See Group (periodic table).^ 存档副本. [2020-02-04]. (原始内容存档于2020-02-03).^ Hiebert, E. N. In Noble-Gas Compounds. Hyman, H. H. (编). Historical Remarks on the Discovery of Argon: The First Noble Gas. University of Chicago Press. 1963: 3–20.^ Travers, M. W. The Discovery of the Rare Gases. Edward Arnold & Co. 1928: 1–7.^ Lord Rayleigh; Ramsay, William. Argon, a New Constituent of the Atmosphere. Proceedings of the Royal Society. 1894–1895, 57 (1): 265–287. JSTOR 115394. doi:10.1098/rspl.1894.0149 .^ Lord Rayleigh; Ramsay, William. VI. Argon: A New Constituent of the Atmosphere. Philosophical Transactions of the Royal Society A. 1895, 186: 187–241. Bibcode:1895RSPTA.186..187R. JSTOR 90645. doi:10.1098/rsta.1895.0006 .^ Ramsay, W. Nobel Lecture. The Nobel Foundation. 1904 [2008-05-02]. (原始内容存档于2017-11-17).^ About Argon, the Inert; The New Element Supposedly Found in the Atmosphere. The New York Times. 3 March 1895 [1 February 2009]. (原始内容存档于2016-03-04).^ Holden, N. E. History of the Origin of the Chemical Elements and Their Discoverers. National Nuclear Data Center. 12 March 2004 [2008-05-02]. (原始内容存档于2011-07-21).^ Khriachtchev, Leonid; Mika Pettersson, Nino Runeberg, Jan Lundell & Markku Räsänen. A stable argon compound. Nature. 2000-08-24, 406: 874–876 [2008-05-01]. doi:10.1038/35022551. (原始内容存档于2016-04-13).^ Belosludov, V. R.; O. S. Subbotin, D. S. Krupskii, O. V. Prokuda, and Y. Kawazoe. Microscopic model of clathrate compounds (PDF). Institute of Physics (has blown up once in a while) Publishing: 1. 2006 [2007-03-08] (英语). [永久失效链接]^ Cohen, A.; Lundell, J.; Gerber, R. B. First compounds with argon–carbon and argon–silicon chemical bonds. Journal of Chemical Physics. 2003, 119 (13): 6415. Bibcode:2003JChPh.119.6415C. doi:10.1063/1.1613631.^ "Periodic Table of the Elements: Argon (页面存档备份,存于互联网档案馆). ,archive-web,archive-is" Lenntech (页面存档备份,存于互联网档案馆). 2008. Retrieved on September 3, 2007.^ Lord Rayleigh;William Ramsay  . Argon, a New Constituent of the Atmosphere.. Proceedings of the Royal Society of London. 1894–1895, 57 (1): 265–287.^ William Ramsay. Nobel Lecture in Chemistry, 1904. [2008-05-02]. (原始内容存档于2017-11-17).^ Holden, Norman E. History of the Origin of the Chemical Elements and Their Discoverers. National Nuclear Data Center (NNDC). 12. (原始内容存档于2011-07-21) (英语). 已忽略未知参数|month=(建议使用|date=) (帮助);^ Argon, Ar. [2007-03-08]. (原始内容存档于2008-10-07).^ Seeing, touching and smelling the extraordinarily Earth-like world of Titan. European Space Agency. 21. (原始内容存档于2008-05-13) (英语). 已忽略未知参数|month=(建议使用|date=) (帮助);^ 跳转至:20.0 20.1 40Ar/39Ar dating and errors. [2007-03-07]. (原始内容存档于2007-10-14).^ Brault, James W; Davis, Sumner P. Fundamental Vibration-Rotation Bands and Molecular Constants for the ArH+ Ground State (1Σ+ ). Physica Scripta. 1 February 1982, 25 (2): 268–271. Bibcode:1982PhyS...25..268B. doi:10.1088/0031-8949/25/2/004.^ Bartlett, Neil. The Noble Gases. Chemical & Engineering News. (原始内容存档于2018-04-29) (英语).^ 氩的介绍^ 跳转至:24.0 24.1 存档副本. [2020-06-30]. (原始内容存档于2020-06-30).^ Weman, p 53^ 感應耦合電漿離子質譜儀技術及其在材料分析的運用 (PDF). 李珠. [2008-05-03]. (原始内容 (PDF)存档于2019-09-03).^ USA National Archives description of how the Declaration of Independence is stored and displayed (页面存档备份,存于互联网档案馆). More detail can be found in this more technical explanation 互联网档案馆的存档,存档日期2008-01-02., especially Page 4 (页面存档备份,存于互联网档案馆), which talks about the argon keeping the oxygen out.^ Description of Aim-9 Operation 互联网档案馆的存档,存档日期2008-12-22. ,archive-web,archive-is^ Energy-Efficient Windows. Bc Hydro. [2007-03-08]. (原始内容存档于2007-02-02).,archive-web,archive-is^ "氮麻醉"。 大英百科全书。 2008年。 大英线上繁体中文版。2008年5月4日 <[1][永久失效链接],archive-web,archive-is>.^ Fujimoto, James; Rox Anderson, R. Tissue Optics, Laser-Tissue Interaction, and Tissue Engineering (PDF). Biomedical Optics: 77–88. 2006 [2007-03-08]. (原始内容 (PDF)存档于2006-03-14) (英语). ,archive-web,archive-is^ 鉀-氬年代測定法. 中国大百科智慧藏. [2008-05-05]. (原始内容存档于2008-10-24).,archive-web,archive-is^ Middaugh, John; Bledsoe, Gary. "Welder's Helper Asphyxiated in Argon-Inerted Pipe (FACE AK-94-012) 互联网档案馆的存档,存档日期2008-04-17.,archive-web,archive-is." State of Alaska Department of Public Health (页面存档备份,存于互联网档案馆). June 23, 1994. Retrieved on September 3, 2007.

转载本文请联系原作者获取授权,同时请注明本文来自李中平科学网博客。链接地址:https://blog.sciencenet.cn/blog-3549522-1386606.html

上一篇:【地球科普】气体地球化学——了解地球演化历史的窗口下一篇:[转载]【中文维基百科】:地球科学

收藏

IP: 210.77.66.*|

热度|

当前推荐数:1

推荐人:

葛维亚

推荐到博客首页

该博文允许注册用户评论 请点击登录

评论 (1 个评论)

数据加载中...

返回顶部

李中平

加为好友

给我留言

打个招呼

发送消息

扫一扫,分享此博文

全部作者的精选博文

• [转载]植物中的花青素(Anthocyanin):色彩的魔术师与健康守护者

• 科普知识:气体地球化学和气体化学的区别

• 岩石内的微观奥秘:气体包裹体同位素地球化学的探索

• 铁-60同位素揭开天文历史研究新篇章

• 隐藏在科学背后的宝藏——探索质谱和质谱离子源的发展历程

• 稳定同位素地球化学百年历程见证:从质谱先驱尼尔(O.Nier)、尤里(H.C.Urey)到Jenckel博士的MAT公司

全部作者的其他最新博文

• [转载]《Nature》:经过15年的争论,地质学家拒绝将人类世作为地球的新纪元

• 《Science》氧同位素揭示数十亿年海洋、温度与碳循环动态重构

• [转载]《自然.地球科学》——钕同位素揭示南极绕极流晚中新世起源之谜

• [转载]文章导读:同位素金属组学(Isotope metalomics)医学研究方法

• 维基百科:法拉第杯接收器(Faraday Cup)和电子倍增器(Electron Multiplier)区别

• 【知识问答】Urey-Bigeleisen-Mayer方程如何揭示同位素分馏的秘密?

全部精选博文导读

• 科学网2024年1月十佳博文榜单公布!

• 植物园领导者之路 | 科学收藏应怎样做战略部署

• 华北电力大学吕玮等:生物质碳集成策略发掘水系Zn-MnO₂电池正极生物相容性

• 最快3-5周发表 | Taylor & Francis 48本医学与健康及药学领域期刊提供加速出版服务

• 没有人工,很难智能|访问李松航

• 科学家过分相信AI的危害

Archiver|手机版|科学网

( 京ICP备07017567号-12 )

GMT+8, 2024-3-7 17:04

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

修改头像

个人资料

认证

积分

用户组

隐私筛选

密码安全

我收到的评论/回复

我发表的评论/回复

查看@我

查看其他

积分 0, 距离下一级还需 积分

返回顶部

Argon_化工百科

Argon_化工百科

化工百科

首页

产品供应商后台

了解会员服务

登陆

免费注册

搜供应商

搜百科

Argon 购买咨询

氩(高纯)(Argon)

CAS: 7440-37-1

化学式: Ar

主页 产品无机化工单质 Argon

氩(高纯)是一种无色、无味、无毒的气体。它是地球大气中的第三常见元素,占据大气的0.934%。高纯氩是指氩的纯度达到了99.999%以上。

氩具有多种优良性质。首先,由于氩在大气中的含量很稳定,并且不会与其他元素发生反应,所以它是一种非常稳定的气体。其次,氩具有一定的惰性,因此可以用作一氧化碳和氯气等高毒性气体的替代品。此外,氩的辐射吸收能力很低,因此广泛用于保护焊接、激光切割和电弧切割等工艺中,以减少材料的氧化和熔融。

氩的制备方法主要是通过空分设备进行气体分离。这些设备通过将空气压缩、冷却和分离来获得高纯氩气。在空分设备中,利用了气体的沸点差异,将空气中的氮气和氧气分离出来,从而得到高纯度的氩气。

在使用氩气时,需要注意一些安全事项。首先,由于氩是一种无色无味的气体,没有明显的告警性,因此在使用过程中要特别注意防范氩气泄露。其次,氩气对人体没有明显毒性,但浓度过高时会引起窒息,因此应在通风良好的场所使用,并避免将容器密封,以免产生过高的压力。此外,氩气为非可燃气体,但可以作为惰性气体支持燃烧,因此在使用氩气时要远离火源。

总结一下,氩(高纯)是一种稳定、无毒且广泛应用的气体。它主要用于焊接、切割和保护气体等工艺中,具有重要的工业应用价值。最后更新:2023-12-21 00:21:33

中文名 氩(高纯)英文名 Argon别名 氖氩氬氩气液氩高纯氩灯泡氩高压氩气氩(高纯)英文别名 Argonargongasargon-40argon atomargonliquidARGON ULTRAPLUSARGON SPUTTERINGargon,compressedargon,highpurityARGON GIGAPLUS(TM)argon,refrigeratedliquidARGON, PRESSURE TIN WITH 1 Largon,refrigeratedliquid(cryogenicliquid)CAS 7440-37-1EINECS 231-147-0化学式 Ar分子量 39.95InChI InChI=1/Ar密度 1.784(0℃)熔点 -189.2°C(lit.)沸点 -185.7°C(lit.)水溶性 33.6mL/1000g H2O (20°C) [KIR78]; Henry’s law constants, k×10?4: 3.974 (25.0°C), 5.359 (65.1°C), 5.342 (91.1°C), 3.812 (222.7°C), 2.541 (267.3°C), 1.870 (287.9°C) [POT78]蒸汽压 343000mmHg at 25°C蒸汽密度 1.38 (21 °C, vs air)稳定性 稳定。惰性。外观 无色气体Merck 13,788物化性质 空气中含量最多的一种稀有气体。无色、无味、无臭。 溶于水,0℃时溶解度为5.6g/cm3水。也溶于乙醇。安全术语 38 - 通风不良时,须佩戴适当的呼吸器。

危险品运输编号 UN 1006 2.2WGK Germany -RTECS CF2300000FLUKA BRAND F CODES 4.5-31Hazard Class 2.2上游原料 液氨 氩(高纯) 下游产品 锂 硅 碳化硅 3-乙酰苯腈 2-氨基环己腈 4-吡啶-2-异恶唑-5-胺 2-(5-甲基-2-苯基1,3-氧杂醇-4-烷基)乙酸 孕二烯酮 多西他赛 氪气 贝前列素 他卡西妥 4-溴-3-羰基戊酸甲酯 磷化钙 磷化镓 氙气 二氧化锆铝

Argon - 性质可信数据无色、无味、无臭、无毒的惰性气体,化学性质极不活泼。在21.1℃和101. 3kPa下气体相对密度1.38。气体密度1- 650kg.m-3  (21.1℃,101. 3kPa),液体密度1394.Okg.m-3(一185.9℃,101. 3kPa)。沸点-  185.9℃。熔点-189.2℃。临界温度-122.3C,临界压力4. 893MPa。溶于有机溶剂。不燃烧,无毒,但人体吸入易窒息。无腐蚀性。若遇高热,容器内压增大,有开裂和爆炸的危险.

最后更新:2024-01-02 23:10:35Argon - 制法可信数据采用空气分离提取氩,即将液化的空气进行精馏,得到粗氩,粗氩经进一步提纯可得到高纯氩。

最后更新:2022-01-01 08:54:52Argon - 用途可信数据高纯氩在半导体工业中用作生产高纯硅和锗晶体的保护气体;可用作系统清洗、屏蔽和增压用惰性气体;在化学气相沉积、溅射和退火等工艺中有所应用。高纯氩可用作色谱载气,也可用作大规模集成电路中混合气体的稀释气。氩被广泛用于充填弧光灯、荧光灯和电子管;焊接保护气;在钛、钴及其他活性金属的生产中用作屏蔽气;在黑色冶金中,氩气用于吹炼特种钢,以提高钢的质量,特别是不锈钢制造中消耗大量氩气。

最后更新:2022-01-01 08:54:52Argon - 安全性可信数据无毒,是一种窒息性气体,高浓度时,使氧分压降低而发生窒息,氩浓度达50%以上,引起严重症状;75%以上时,可在数分钟内死亡。当空气中氩浓度增高时,先出现呼吸加速,注意力不集中,以致死亡。避免高浓度吸入。进入罐、限制性空间或其他高浓度区作业,须有人监护。液态氩可致皮肤冻伤;眼部接触可引起炎症。贮存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与易(可)燃物分开存放,切忌混贮。

最后更新:2022-01-01 08:54:53

查看Argon结构式

供应商列表

河北贞田食品添加剂有限公司产品名: 氩(高纯)

询盘CAS: 7440-37-1产地: 河北电话: 0319-5925599手机: 13373390591电子邮件: 13313091926@163.com微信: 13373390591 浙江杭宇医药科技有限公司提供多种规格产品名: 氩(高纯)

询盘CAS: 7440-37-1产地: 浙江电话: +86 18134193529手机: 18134193529电子邮件: 18134193529@163.com 天脊集团应用化工有限公司产品名: 液氩

询盘CAS: 7440-37-1产地: 山西电话: 0355-6898890电子邮件: zcs@tjyyhg.com产品描述: 常用作惰性保护气体,填充各种类型灯泡 天津市东祥特种气体有限责任公司产品名: 液氩

询盘CAS: 7440-37-1产地: 天津电话: 022-58136678电子邮件: dongxiangteqi@sina.com产品描述: 常用作惰性保护气体,填充各种类型灯泡 江西湘樟化工有限公司产品名: 氩气

询盘CAS: 7440-37-1产地: 江西电话: 0795-7567200 13970585117电子邮件: sales@xiangzhangchem.com产品描述: 常用作惰性保护气体,填充各种类型灯泡

河北贞田食品添加剂有限公司产品名: 氩(高纯)

询盘CAS: 7440-37-1产地: 河北电话: 0319-5925599手机: 13373390591电子邮件: 13313091926@163.com微信: 13373390591 浙江杭宇医药科技有限公司提供多种规格产品名: 氩(高纯)

询盘CAS: 7440-37-1产地: 浙江电话: +86 18134193529手机: 18134193529电子邮件: 18134193529@163.com 天脊集团应用化工有限公司产品名: 液氩

询盘CAS: 7440-37-1产地: 山西电话: 0355-6898890电子邮件: zcs@tjyyhg.com产品描述: 常用作惰性保护气体,填充各种类型灯泡 天津市东祥特种气体有限责任公司产品名: 液氩

询盘CAS: 7440-37-1产地: 天津电话: 022-58136678电子邮件: dongxiangteqi@sina.com产品描述: 常用作惰性保护气体,填充各种类型灯泡 江西湘樟化工有限公司产品名: 氩气

询盘CAS: 7440-37-1产地: 江西电话: 0795-7567200 13970585117电子邮件: sales@xiangzhangchem.com产品描述: 常用作惰性保护气体,填充各种类型灯泡

Argon的上游原料

液氨 氩(高纯)

Argon的下游产品

硅 碳化硅 3-(2-溴乙酰基)苯甲腈 2-(5-甲基-2-苯基1,3-氧杂醇-4-烷基)乙酸 孕二烯酮 锗 4-溴-3-羰基戊酸甲酯 磷化钙 磷化镓 氩氖混合气

您刚刚浏览过

Argon

你知道吗?

微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!

使用化工百科前必读

首页

注册

登录

会员介绍

联系方式

化工百科英文站

氩 - 搜狗百科

搜狗百科氩(Argon)是一种化学元素,在希腊语有“不活泼”的意思,由它的特性而来;非金属元素,元素符号Ar,原子序数是18,为单原子分子,单质为无色、无臭和无味的气体,是目前最早发现的稀有气体。由于原子外层轨道充满电子,因此它不容易发生化学反应,是一种惰性气体。把它放电时呈紫色。已知的氩的同位素共有14种,包括氩33至氩46。氩占大气体积的0.93%,是地球大气中第三多的气体,也是在大气中含量最多的惰性气体。它的三相点以国际实用温标定义为83.8058K。网页微信知乎图片视频医疗汉语问问百科更多»登录帮助首页任务任务中心公益百科积分商城个人中心添加义项氩是一个多义词,您可以选择查看以下义项(共2个义项):化学元素2017年李允正执导电视剧氩编辑词条添加义项同义词收藏分享分享到QQ空间新浪微博化学元素氩(Argon)是一种化学元素,在希腊语有“不活泼”的意思,由它的特性而来;非金属元素,元素符号Ar,原子序数是18,为单原子分子,单质为无色、无臭和无味的气体,是目前最早发现的稀有气体。由于原子外层轨道充满电子,因此它不容易发生化学反应,是一种惰性气体。把它放电时呈紫色。已知的氩的同位素共有14种,包括氩33至氩46。氩占大气体积的0.93%,是地球大气中第三多的气体,也是在大气中含量最多的惰性气体。它的三相点以国际实用温标定义为83.8058K。中文名氩展开元素符号Ar展开发现人瑞利、拉姆赛展开原子量39.948展开周期第三周期展开区p区展开外文名Argon展开沸点-185.7℃展开外观无色气体展开原子序数18展开族0族展开词条标签:化学化学元素气体元素名称物理学免责声明搜狗百科词条内容由用户共同创建和维护,不代表搜狗百科立场。如果您需要医学、法律、投资理财等专业领域的建议,我们强烈建议您独自对内容的可信性进行评估,并咨询相关专业人士。词条信息词条浏览:72345次最近更新:23.05.17编辑次数:37次创建者:依剑倾心突出贡献者:新手指引了解百科编辑规范用户体系商城兑换问题解答关于审核关于编辑关于创建常见问题意见反馈及投诉举报与质疑举报非法用户未通过申诉反馈侵权信息对外合作邮件合作任务领取官方微博微信公众号搜索词条编辑词条 收藏 查看我的收藏分享分享到QQ空间新浪微博投诉登录企业推广免责声明用户协议隐私政策编辑帮助意见反馈及投诉© SOGOU.COM 京ICP备11001839号-1 京公网安备110000020000

Argon

Argon

Jump to content

National Institute of Standards and

Technology

NIST Chemistry

WebBook, SRD 69

Home

Search

Name

Formula

IUPAC identifier

CAS number

More options

NIST Data

SRD Program

Science Data Portal

Office of Data

and Informatics

About

FAQ

Credits

More documentation

Argon

Formula: Ar

Molecular weight: 39.948

IUPAC Standard InChI:

InChI=1S/Ar

Copy

IUPAC Standard InChIKey:

XKRFYHLGVUSROY-UHFFFAOYSA-N

Copy

CAS Registry Number: 7440-37-1

Chemical structure:

This structure is also available as a 2d Mol file

Other names:

Ar;

UN 1006;

UN 1951;

argon atom

Permanent link

for this species. Use this link for bookmarking this species

for future reference.

Information on this page:

Gas phase thermochemistry data

Phase change data

Reaction thermochemistry data (reactions 1 to 50)

Henry's Law data

Gas phase ion energetics data

Mass spectrum (electron ionization)

References

Notes

Other data available:

Reaction thermochemistry data:

reactions 51 to 100,

reactions 101 to 102

Ion clustering data

Fluid Properties

Data at other public NIST sites:

NIST Atomic Spectra Database - Lines Holdings (on physics web site)

NIST Atomic Spectra Database - Levels Holdings (on physics web site)

NIST Atomic Spectra Database - Ground states and ionization energies (on physics web site)

Computational Chemistry Comparison and Benchmark Database

Gas Phase Kinetics Database

X-ray Photoelectron Spectroscopy Database, version 5.0

X-ray Photoelectron Spectroscopy Database, version 5.0

X-ray Photoelectron Spectroscopy Database, version 5.0

X-ray Photoelectron Spectroscopy Database, version 5.0

X-ray Photoelectron Spectroscopy Database, version 5.0

X-ray Photoelectron Spectroscopy Database, version 5.0

X-ray Photoelectron Spectroscopy Database, version 5.0

X-ray Photoelectron Spectroscopy Database, version 5.0

Options:

Switch to calorie-based units

Data at NIST subscription sites:

NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)

NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)

NIST subscription sites provide data under the

NIST Standard Reference

Data Program, but require an annual fee to access.

The purpose of the fee is to recover costs associated

with the development of data collections included in

such sites. Your institution may already be a subscriber.

Follow the links above to find out more about the data

in these sites and their terms of usage.

Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright

by the U.S. Secretary of Commerce on behalf of the U.S.A.

All rights reserved.

Quantity

Value

Units

Method

Reference

Comment

S°gas,1 bar154.846 ± 0.003J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value

S°gas,1 bar154.84J/mol*KReviewChase, 1998Data last reviewed in March, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 +

E/t2

H° − H°298.15= A*t + B*t2/2 +

C*t3/3 + D*t4/4 − E/t + F − H

S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −

E/(2*t2) + G

    Cp = heat capacity (J/mol*K)

    H° = standard enthalpy (kJ/mol)

    S° = standard entropy (J/mol*K)

    t = temperature (K) / 1000.

View plot

Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K)

298. - 6000.

A

20.78600

B

2.825911×10-7

C

-1.464191×10-7

D

1.092131×10-8

E

-3.661371×10-8

F

-6.197350

G

179.9990

H

0.000000

ReferenceChase, 1998

Comment

Data last reviewed in March, 1982

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright

by the U.S. Secretary of Commerce on behalf of the U.S.A.

All rights reserved.

Data compiled as indicated in comments:

TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity

Value

Units

Method

Reference

Comment

Tboil87.5KN/AStreng, 1971Uncertainty assigned by TRC = 0.3 K; TRC

Tboil87.28KN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.02 K; TRC

Quantity

Value

Units

Method

Reference

Comment

Tfus83.8KN/AVan't Zelfde, Omar, et al., 1968Uncertainty assigned by TRC = 0.3 K; TRC

Quantity

Value

Units

Method

Reference

Comment

Ttriple87.78KN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.05 K; TRC

Ttriple83.8KN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.05 K; TRC

Ttriple83.8KN/AZiegler, Mullins, et al., 1962Uncertainty assigned by TRC = 0.05 K; TRC

Ttriple83.78KN/AClark, Din, et al., 1951Uncertainty assigned by TRC = 0.04 K; TRC

Ttriple83.78KN/AClusius and Weigand, 1940Uncertainty assigned by TRC = 0.2 K; See property X for dP/dT at triple point; TRC

Quantity

Value

Units

Method

Reference

Comment

Ptriple0.689barN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.0001 bar; TRC

Ptriple0.689barN/AZiegler, Mullins, et al., 1962Uncertainty assigned by TRC = 0.0001 bar; TRC

Ptriple0.6875barN/AClark, Din, et al., 1951Uncertainty assigned by TRC = 0.0007 bar; TRC

Quantity

Value

Units

Method

Reference

Comment

Tc150.86KN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.1 K; TRC

Tc150.86KN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.1 K; TRC

Tc150.65KN/AMcCain and Ziegler, 1967Uncertainty assigned by TRC = 0.03 K; TRC

Quantity

Value

Units

Method

Reference

Comment

Pc4.8979barN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.002 bar; TRC

Pc48.9805barN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.1013 bar; TRC

Pc48.5549barN/AMcCain and Ziegler, 1967Uncertainty assigned by TRC = 0.0709 bar; TRC

Quantity

Value

Units

Method

Reference

Comment

ρc13.41mol/lN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.005 mol/l; TRC

ρc8.4029mol/lN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.008 mol/l; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))

    P = vapor pressure (bar)

    T = temperature (K)

View plot

Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K)

A

B

C

Reference

Comment

114.40 - 150.314.46903481.01222.156McCain and Ziegler, 1967Coefficents calculated by NIST from author's data.

83.78 - 150.723.29555215.24-22.233Drii and Rabinovich, 1966Coefficents calculated by NIST from author's data.

129.33 - 147.404.97171658.98249.819van Itterbeek, Verbeke, et al., 1963Coefficents calculated by NIST from author's data.

90.94 - 101.483.73479302.683-6.083Clark, Din, et al., 1951, 2Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center

(TRC) data available from this site, much more physical

and chemical property data is available from the

following TRC products:

SRD 103a – Thermo Data Engine (TDE) for pure compounds.

SRD 103b – Thermo Data Engine (TDE) for pure compounds,

binary mixtures and chemical reactions

SRSD 2 – Web Thermo Tables (WTT), "lite" edition

SRSD 3 – Web Thermo Tables (WTT), professional edition

SRD 147 – Ionic Liquids Database

SRD 156 – Clathrate Hydrate Physical Property Database

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright

by the U.S. Secretary of Commerce on behalf of the U.S.A.

All rights reserved.

Data compiled as indicated in comments:

RCD - Robert C. Dunbar

M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

B - John E. Bartmess

Note: Please consider using the

reaction search for this species. This page allows searching

of all reactions involving this species. A general reaction search

form is

also available. Future versions of this site may rely on

reaction search pages in place of the enumerated reaction

displays seen below.

Reactions 1 to 50

 +  = ( • )

By formula: Li+ + Ar = (Li+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°30. ± 4.kJ/molAVGN/AAverage of 4 out of 6 values; Individual data points

Quantity

Value

Units

Method

Reference

Comment

ΔrS°30.J/mol*KDTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Free energy of reaction

ΔrG° (kJ/mol)

T (K)

Method

Reference

Comment

5.9294.IMobCassidy and Elford, 1985gas phase; M

7.9319.DTKeller, Beyer, et al., 1973gas phase; LOW E/N; M

11.215.DTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Ar+ +  = (Ar+ • )

By formula: Ar+ + Ar = (Ar+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°100. ± 90.kJ/molAVGN/AAverage of 5 out of 7 values; Individual data points

Quantity

Value

Units

Method

Reference

Comment

ΔrS°53.6J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)Ar; Turner and Conway, 1979, Liu and Conway, 1975; M

 +  = ( • )

By formula: K+ + Ar = (K+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°12. ± 3.kJ/molAVGN/AAverage of 9 values; Individual data points

 +  = ( • )

By formula: N2+ + Ar = (N2+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°112.kJ/molPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M

ΔrH°106.kJ/molPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°81.6J/mol*KPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M

ΔrS°57.3J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M

 +  = ( • )

By formula: Cs+ + Ar = (Cs+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°8.16kJ/molIMobGatland, 1984gas phase; M

ΔrH°6.11kJ/molSCATTERINGGislason, 1984gas phase; M

ΔrH°8.20kJ/molIMobViehland, 1984gas phase; M

ΔrH°9.54kJ/molIMobTakebe, 1983gas phase; M

ΔrH°9.6kJ/molIMobTakebe, 1983gas phase; values from this reference are consistently too high; M

 +  = ( • )

By formula: Cr+ + Ar = (Cr+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°29. ± 2.kJ/molSIDTKemper, Hsu, et al., 1991gas phase; ΔrH(0 K) = 27.4 kJ/mol, ΔrS(100 K) = 60.2 J/mol*K; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°66.1J/mol*KSIDTKemper, Hsu, et al., 1991gas phase; ΔrH(0 K) = 27.4 kJ/mol, ΔrS(100 K) = 60.2 J/mol*K; M

 +  = ( • )

By formula: Na+ + Ar = (Na+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°15. ± 8.8kJ/molCIDTArmentrout and Rodgers, 2000RCD

ΔrH°15.5kJ/molSCATTERINGGislason, 1984gas phase; M

ΔrH°18.4kJ/molIMobViehland, 1984gas phase; M

ΔrH°18.kJ/molDTMcKnight and Sawina, 1973gas phase; M

ΔrH°20.4kJ/molIMobTakebe, 1983gas phase; M

H3+ +  = (H3+ • )

By formula: H3+ + Ar = (H3+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°28.0 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M

ΔrH°31. ± 3.kJ/molSIFTBedford and Smith, 1990gas phase; switching reaction(H3+)H2, Hiraoka and Mori, 1989; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°56.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

Xe+ +  = (Xe+ • )

By formula: Xe+ + Ar = (Xe+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°17.kJ/molPIDehmer and Pratt, 1982gas phase; M

ΔrH°25.kJ/molSIFTJones, Lister, et al., 1980gas phase; M

ΔrH°13.kJ/molPINg, Tiedemann, et al., 1977gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°81.2J/mol*KSIFTJones, Lister, et al., 1980gas phase; M

(Ar+ • 2) +  = (Ar+ • 3)

By formula: (Ar+ • 2Ar) + Ar = (Ar+ • 3Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°20. ± 1.kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°72.4J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

Free energy of reaction

ΔrG° (kJ/mol)

T (K)

Method

Reference

Comment

8.477.PHPMSTeng and Conway, 1973gas phase; M

( • 7) +  = ( • 8)

By formula: (N2+ • 7Ar) + Ar = (N2+ • 8Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°6.40kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

( • 8) +  = ( • 9)

By formula: (N2+ • 8Ar) + Ar = (N2+ • 9Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°6.36kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

 +  = ArF-

By formula: F- + Ar = ArF-

Quantity

Value

Units

Method

Reference

Comment

ΔrH°8.37kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B

Quantity

Value

Units

Method

Reference

Comment

ΔrG°-16.6kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B

 +  = ( • )

By formula: Rb+ + Ar = (Rb+ • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°8.49kJ/molIMobGatland, 1984gas phase; M

ΔrH°8.28kJ/molIMobViehland, 1984gas phase; M

ΔrH°11.9kJ/molIMobTakebe, 1983gas phase; M

(O- • 10) +  = (O- • 11)

By formula: (O- • 10Ar) + Ar = (O- • 11Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°2. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 11) +  = (O- • 12)

By formula: (O- • 11Ar) + Ar = (O- • 12Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°3. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 12) +  = (O- • 13)

By formula: (O- • 12Ar) + Ar = (O- • 13Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 13) +  = (O- • 14)

By formula: (O- • 13Ar) + Ar = (O- • 14Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 14) +  = (O- • 15)

By formula: (O- • 14Ar) + Ar = (O- • 15Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°2. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 15) +  = (O- • 16)

By formula: (O- • 15Ar) + Ar = (O- • 16Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 16) +  = (O- • 17)

By formula: (O- • 16Ar) + Ar = (O- • 17Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 17) +  = (O- • 18)

By formula: (O- • 17Ar) + Ar = (O- • 18Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 18) +  = (O- • 19)

By formula: (O- • 18Ar) + Ar = (O- • 19Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 19) +  = (O- • 20)

By formula: (O- • 19Ar) + Ar = (O- • 20Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 20) +  = (O- • 21)

By formula: (O- • 20Ar) + Ar = (O- • 21Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 21) +  = (O- • 22)

By formula: (O- • 21Ar) + Ar = (O- • 22Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 22) +  = (O- • 23)

By formula: (O- • 22Ar) + Ar = (O- • 23Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 23) +  = (O- • 24)

By formula: (O- • 23Ar) + Ar = (O- • 24Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 24) +  = (O- • 25)

By formula: (O- • 24Ar) + Ar = (O- • 25Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 25) +  = (O- • 26)

By formula: (O- • 25Ar) + Ar = (O- • 26Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 9) +  = (O- • 10)

By formula: (O- • 9Ar) + Ar = (O- • 10Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°3. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 2) +  = (O- • 3)

By formula: (O- • 2Ar) + Ar = (O- • 3Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°6.7 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 3) +  = (O- • 4)

By formula: (O- • 3Ar) + Ar = (O- • 4Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°5.9 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 4) +  = (O- • 5)

By formula: (O- • 4Ar) + Ar = (O- • 5Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°5.0 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 5) +  = (O- • 6)

By formula: (O- • 5Ar) + Ar = (O- • 6Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°5.0 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 6) +  = (O- • 7)

By formula: (O- • 6Ar) + Ar = (O- • 7Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°4.2 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 7) +  = (O- • 8)

By formula: (O- • 7Ar) + Ar = (O- • 8Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°4. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 8) +  = (O- • 9)

By formula: (O- • 8Ar) + Ar = (O- • 9Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°4. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • ) +  = (O- • 2)

By formula: (O- • Ar) + Ar = (O- • 2Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°8.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Ar+ • ) +  = (Ar+ • 2)

By formula: (Ar+ • Ar) + Ar = (Ar+ • 2Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°21.2 ± 0.3kJ/molPHPMSTurner and Conway, 1979gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°84.9J/mol*KPHPMSTurner and Conway, 1979gas phase; M

( • ) +  = ( • 2)

By formula: (N2+ • Ar) + Ar = (N2+ • 2Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°16.kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°71.J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>; M

O- +  = (O- • )

By formula: O- + Ar = (O- • Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°9.2 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Ar+ • 10) +  = (Ar+ • 11)

By formula: (Ar+ • 10Ar) + Ar = (Ar+ • 11Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°6.5 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°72.8J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 9) +  = (Ar+ • 10)

By formula: (Ar+ • 9Ar) + Ar = (Ar+ • 10Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°6.49 ± 0.84kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°71.5J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(D3+ • 2) +  = (D3+ • 3)

By formula: (D3+ • 2Ar) + Ar = (D3+ • 3Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°18.6 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°77.0J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 3) +  = (D3+ • 4)

By formula: (D3+ • 3Ar) + Ar = (D3+ • 4Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°10.2 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°69.5J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 4) +  = (D3+ • 5)

By formula: (D3+ • 4Ar) + Ar = (D3+ • 5Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°9.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°72.8J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 5) +  = (D3+ • 6)

By formula: (D3+ • 5Ar) + Ar = (D3+ • 6Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°9.1 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°79.9J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 6) +  = (D3+ • 7)

By formula: (D3+ • 6Ar) + Ar = (D3+ • 7Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°6.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°105.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Ar+ • 3) +  = (Ar+ • 4)

By formula: (Ar+ • 3Ar) + Ar = (Ar+ • 4Ar)

Quantity

Value

Units

Method

Reference

Comment

ΔrH°7.0 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M

Quantity

Value

Units

Method

Reference

Comment

ΔrS°58.2J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright

by the U.S. Secretary of Commerce on behalf of the U.S.A.

All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))

k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))

d(ln(kH))/d(1/T) = Temperature dependence constant (K)

k°H (mol/(kg*bar))

d(ln(kH))/d(1/T) (K)

Method

Reference

0.00141500.LN/A

0.00141100.MN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright

by the U.S. Secretary of Commerce on behalf of the U.S.A.

All rights reserved.

Data evaluated as indicated in comments:

HL - Edward P. Hunter and Sharon G. Lias

L - Sharon G. Lias

Data compiled as indicated in comments:

LL - Sharon G. Lias and Joel F. Liebman

LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard

LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi

RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity

Value

Units

Method

Reference

Comment

IE (evaluated)15.759 ± 0.001eVN/AN/AL

Quantity

Value

Units

Method

Reference

Comment

Proton affinity (review)369.2kJ/molN/AHunter and Lias, 1998HL

Quantity

Value

Units

Method

Reference

Comment

Gas basicity346.3kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV)

Method

Reference

Comment

15.763PIPECOWeitzel, Mahnert, et al., 1994LL

15.75962EVALLide, 1992LL

15.82EIWetzel, Baiocchi, et al., 1987LBLHLM

15.760SKelly, 1987LBLHLM

15.759PEKimura, Katsumata, et al., 1981LLK

15.88EIClare and Sowerby, 1981LLK

15.7EIFreiser, 1980LLK

15.75962 ± 0.00001SMinnhagen, 1973LLK

15.753 ± 0.002TESpohr, Guyon, et al., 1971LLK

15.75962 ± 0.00001SYoshino, 1970RDSH

15.759SYoshino, 1969RDSH

15.713 ± 0.003CIHotop and Niehaus, 1969RDSH

15.757 ± 0.005PECollin and Natalis, 1968RDSH

15.74 ± 0.05EIGallegos and Klaver, 1967RDSH

15.78 ± 0.03EIWinters, Collins, et al., 1966RDSH

15.79PEAl-Joboury and Turner, 1963RDSH

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright

by the U.S. Secretary of Commerce on behalf of the U.S.A.

All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript

and HTML 5 enabled browser.

For Zoom

1.) Enter the desired X axis range

(e.g., 100, 200)

2.) Check here for automatic Y scaling

3.) Press here to zoom

Plot

Help / Software credits

Help

The interactive spectrum display requires a browser with JavaScript and

HTML 5 canvas support.

Select a region with data to zoom. Select a region with no data or

click the mouse on the plot to revert to the orginal display.

Credits

The following components were used in generating the plot:

jQuery

jQuery UI

Flot

Plugins for Flot:

Resize (distributed with Flot)

Selection (distributed

with Flot)

Axis labels

Labels

(

Modified by NIST for use in this application)

Additonal code used was developed at NIST:

jcamp-dx.js and

jcamp-plot.js.

Use or mention of technologies or programs in this web site is not

intended to imply recommendation or endorsement by the National

Institute of Standards and Technology, nor is it intended to imply

that these items are necessarily the best available for the purpose.

Additional Data

View image of digitized

spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner

NIST Mass Spectrometry Data Center

Collection (C) 2014 copyright by the U.S. Secretary of Commerce

on behalf of the United States of America. All rights reserved.

Origin

DOW CHEMICAL COMPANY / ASTM E14-UNCERTIFIED SPECTRUM 1

NIST MS number

34321

All mass spectra in this site (plus many more) are

available from the NIST/EPA/NIH Mass Spectral Library.

Please see the following for information about

the library and

its accompanying search program.

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes

Data compilation copyright

by the U.S. Secretary of Commerce on behalf of the U.S.A.

All rights reserved.

Cox, Wagman, et al., 1984

Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,

CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998

Chase, M.W., Jr.,

NIST-JANAF Themochemical Tables, Fourth Edition,

J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Streng, 1971

Streng, A.G.,

Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature,

J. Chem. Eng. Data, 1971, 16, 357. [all data]

Gosman, McCarty, et al., 1969

Gosman, A.L.; McCarty, R.D.; Hust, J.G.,

Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. NSRDS-NBS 27, 1969. [all data]

Van't Zelfde, Omar, et al., 1968

Van't Zelfde, P.; Omar, M.H.; LePair-Schroten, H.G.M.; Dokoupil, Z.,

Solid-liquid equilibrium diagram for the argon + methane system.,

Physica (Amsterdam), 1968, 38, 241-51. [all data]

Angus, Armstrong, et al., 1972

Angus, S.; Armstrong, B.; Gosman, A.L.; McCarty, R.D.; Hust, J.G.; Vasserman, A.A.; Rabinovich, V.A.,

International Thermodynamic Tables of the Fluid State - 1 Argon, Butterworths, London, 1972. [all data]

Ziegler, Mullins, et al., 1962

Ziegler, W.T.; Mullins, J.C.; Kirk, B.S.,

Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids, Especially Below One Atmosphere Pressure. II. Argon, Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-460, Tech. Rep. No. 2, 1962. [all data]

Clark, Din, et al., 1951

Clark, A.M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, Th.N.,

The Vapor Pressure of Argon,

Physica (Amsterdam), 1951, 17, 876. [all data]

Clusius and Weigand, 1940

Clusius, K.; Weigand, K.,

Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting,

Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]

McCain and Ziegler, 1967

McCain, W.D., Jr.; Ziegler, W.T.,

The Critical Temperature, Critical Pressure, and Vapor Pressure of Argon,

J. Chem. Eng. Data, 1967, 12, 2, 199-202, https://doi.org/10.1021/je60033a012

. [all data]

Drii and Rabinovich, 1966

Drii, L.I.; Rabinovich, V.A.,

Dependence of Vapor Pressure of Argon,

Zh. Fiz. Khim., 1966, 40, 709-711. [all data]

van Itterbeek, Verbeke, et al., 1963

van Itterbeek, A.; Verbeke, O.; Staes, K.,

Measurements on the Equation of State of Liquid Argon and Methane Up to 300 kg cm-2 at Low Temperatures,

Physica (Amsterdam), 1963, 29, 6, 742-754, https://doi.org/10.1016/S0031-8914(63)80231-1

. [all data]

Clark, Din, et al., 1951, 2

Clark, A.M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, Th.,

The Vapour Pressure of Argon,

Physica (Amsterdam), 1951, 17, 10, 876-884, https://doi.org/10.1016/0031-8914(51)90041-9

. [all data]

McKnight and Sawina, 1973

McKnight, L.G.; Sawina, J.M.,

Equilibrium Constants and Binding Energies of Alkali Metal Ions with Inert Gases,

Bull. Am. Phys. Soc., 1973, 18, 804. [all data]

Cassidy and Elford, 1985

Cassidy, R.A.; Elford, M.T.,

The Mobility of Li+ Ions in Helium and Argon,

Aust. J. Phys., 1985, 38, 4, 587, https://doi.org/10.1071/PH850587

. [all data]

Keller, Beyer, et al., 1973

Keller, C.E.; Beyer, R.A.; Colonna-Romano, L.M.,

Clustering of Ar to Li+ and a Comparison of Drift - Tube Models,

Phys. Rev. A, 1973, 8, 3, 1446, https://doi.org/10.1103/PhysRevA.8.1446

. [all data]

Teng and Conway, 1973

Teng, H.H.; Conway, D.C.,

Ion - Molecule Equilibria in Mixtures of N2 and Ar,

J. Chem. Phys., 1973, 59, 5, 2316, https://doi.org/10.1063/1.1680338

. [all data]

Turner and Conway, 1979

Turner, D.L.; Conway, D.C.,

Study of the 2Ar + Ar2+ = Ar + Ar3+ Reaction,

J. Chem. Phys., 1979, 71, 4, 1899, https://doi.org/10.1063/1.438544

. [all data]

Liu and Conway, 1975

Liu, W.F.; Conway, D.C.,

Ion - Molecule Reactions in Ar at 296, 195, and 77 K,

J. Chem. Phys., 1975, 62, 8, 3070, https://doi.org/10.1063/1.430906

. [all data]

Kim and Bowers, 1990

Kim, H.S.; Bowers, M.T.,

Energetics, Structure and Photodissociation Dynamics of the Cluster Ar.N2+,

J. Chem. Phys., 1990, 93, 2, 1158, https://doi.org/10.1063/1.459179

. [all data]

Hiraoka and Nakajima, 1988

Hiraoka, K.; Nakajima, G.,

A Determination of the Stabilities of N2+(N2)n and O2+(N2)n with n = 1 - 11 from Measurements of the Gas - Phase Ion Equilibria,

J. Chem. Phys., 1988, 88, 12, 7709, https://doi.org/10.1063/1.454285

. [all data]

Gatland, 1984

Gatland, I.R.,

Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984

Gislason, E.A.,

Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984

Viehland, L.A.,

Interaction Potentials for Li+ - Rare - Gas Systems,

Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3

. [all data]

Takebe, 1983

Takebe, M.,

The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves,

J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763

. [all data]

Kemper, Hsu, et al., 1991

Kemper, P.R.; Hsu, M.T.; Bowers, M.T.,

Transition - Metal Ion - Rare Gas Clusters: Bond Strengths and Molecular Parameters for Co+(He/Ne)n, Ni+(He/Ne)n, and Cr+(He/Ne/Ar),

J. Phys. Chem., 1991, 95, 26, 10600, https://doi.org/10.1021/j100179a022

. [all data]

Armentrout and Rodgers, 2000

Armentrout, P.B.; Rodgers, M.T.,

An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,

J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n

. [all data]

Hiraoka and Mori, 1989

Hiraoka, K.; Mori, T.,

Isotope Effect and Nature of Bonding in the Cluster Ions H3+(Ar)n and D3+(Ar)n,

J. Chem. Phys., 1989, 91, 8, 4821, https://doi.org/10.1063/1.456720

. [all data]

Bedford and Smith, 1990

Bedford, D.K.; Smith, D.,

Variable-temperature selected ion flow tube studies of the reactions of Ar+, Ar2+ and ArHn+ (n=1-3) ions with H2, HD and D2 at 300 K and 80 K,

Int. J. Mass Spectrom. Ion Proc., 1990, 98, 2, 179, https://doi.org/10.1016/0168-1176(90)85017-V

. [all data]

Dehmer and Pratt, 1982

Dehmer, P.M.; Pratt, S.T.,

Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions,

J. Chem. Phys., 1982, 77, 4804. [all data]

Jones, Lister, et al., 1980

Jones, J.D.C.; Lister, D.G.; Twiddy, N.D.,

Equilibrium Constant for the Reaction Xe+ + 2Ar ---> XeAr+ + Ar in the Temperature Range 150 - 300 K and the Dissociation Energy of XeAr+,

Chem. Phys. Lett., 1980, 70, 3, 575, https://doi.org/10.1016/0009-2614(80)80128-X

. [all data]

Ng, Tiedemann, et al., 1977

Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T.,

Photoionization Studies of the Diatomic Internuclear Rare Gas Molecules XeKr, XeAr, and KrAr,

J. Chem. Phys., 1977, 66, 12, 5737, https://doi.org/10.1063/1.433848

. [all data]

Hiraoka and Mori, 1989, 2

Hiraoka, K.; Mori, T.,

Formation and Stabilities of Cluster Ions Arn+,

J. Chem. Phys., 1989, 90, 12, 7143, https://doi.org/10.1063/1.456245

. [all data]

Hiraoka, Mori, et al., 1992

Hiraoka, K.; Mori, T.; Yamabe, S.,

Gas-Phase Solvation of N2+ with Ar Atoms - A Charge Switch in the Reaction N2+(Ar)...Ar+(N2),

Chem. Phys. Lett., 1992, 189, 1, 7, https://doi.org/10.1016/0009-2614(92)85144-Y

. [all data]

Wada, Kikkawa, et al., 2007

Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K.,

Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms,

Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053

. [all data]

Arnold, Hendricks, et al., 1995

Arnold, S.T.; Hendricks, J.H.; Bowen, K.H.,

Photoelectron spectroscopy of the solvated anion clusters O-(Ar)(n=1-26,34): Energetics and structure,

J. Chem. Phys., 1995, 102, 1, 39, https://doi.org/10.1063/1.469415

. [all data]

Hunter and Lias, 1998

Hunter, E.P.; Lias, S.G.,

Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,

J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018

. [all data]

Weitzel, Mahnert, et al., 1994

Weitzel, K.-M.; Mahnert, J.; Penno, M.,

ZEKE-PEPICO investigations of dissociation energies in ionic reactions,

Chem. Phys. Lett., 1994, 224, 371. [all data]

Lide, 1992

Lide, D.R. (Editor),

Ionization potentials of atoms and atomic ions

in Handbook of Chem. and Phys., 1992, 10-211. [all data]

Wetzel, Baiocchi, et al., 1987

Wetzel, R.C.; Baiocchi, F.A.; Hayes, T.R.; Freund, R.S.,

Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method,

Phys. Rev. A, 1987, 35, 559. [all data]

Kelly, 1987

Kelly, R.L.,

Atomic and ionic spectrum lines of hydrogen through kryton,

J. Phys. Chem. Ref. Data, 1987, 16. [all data]

Kimura, Katsumata, et al., 1981

Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,

Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules

in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Clare and Sowerby, 1981

Clare, P.; Sowerby, D.B.,

Electron impact ionisation energies of some halo-cyclotriphosphazenes,

J. Inorg. Nucl. Chem., 1981, 43, 477. [all data]

Freiser, 1980

Freiser, B.S.,

Electron impact ionization of argon ions by trapped ion cyclotron resonanace spectroscopy,

Int. J. Mass Spectrom. Ion Phys., 1980, 33, 263. [all data]

Minnhagen, 1973

Minnhagen, L.,

Spectrum and the energy levels of neutral argon, Ar I,

J. Opt. Soc. Am., 1973, 63, 1185. [all data]

Spohr, Guyon, et al., 1971

Spohr, R.; Guyon, P.M.; Chupka, W.A.; Berkowitz, J.,

Threshold photoelectron detector for use in the vacuum ultraviolet,

Rev. Sci. Instrum., 1971, 42, 1872. [all data]

Yoshino, 1970

Yoshino, K.,

Absorption spectrum of the argon atom in the vacuum-ultraviolet region,

J. Opt. Soc. Am., 1970, 60, 1220. [all data]

Yoshino, 1969

Yoshino, K.,

Absorption spectrum of the argon atom in the vacuum-ultraviolet region,

J. Opt. Soc. Am., 1969, 59, 1525. [all data]

Hotop and Niehaus, 1969

Hotop, H.; Niehaus, A.,

Reactions of excited atoms molecules with atoms and molecules. II. Energy analysis of penning electrons,

Z. Phys., 1969, 228, 68. [all data]

Collin and Natalis, 1968

Collin, J.E.; Natalis, P.,

Vibrational and electronic ionic states of nitric oxide. An accurate method for measuring ionization potentials by photoelectron spectroscopy,

Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 483. [all data]

Gallegos and Klaver, 1967

Gallegos, E.J.; Klaver, R.F.,

Automatic voltage scanner for a peak switching mass spectrometer,

J.Sci. Instr., 1967, 44, 427. [all data]

Winters, Collins, et al., 1966

Winters, R.E.; Collins, J.H.; Courchene, W.L.,

Resolution of fine structure in ionization-efficiency curves,

J. Chem. Phys., 1966, 45, 1931. [all data]

Al-Joboury and Turner, 1963

Al-Joboury, M.I.; Turner, D.W.,

Molecular photo-electron spectroscopy. Part I. The hydrogen and nitrogen molecules,

J. Chem. Soc., 1963, 5141. [all data]

Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References

Symbols used in this document:

IE (evaluated)

Recommended ionization energy

Pc

Critical pressure

Ptriple

Triple point pressure

S°gas,1 bar

Entropy of gas at standard conditions (1 bar)

T

Temperature

Tboil

Boiling point

Tc

Critical temperature

Tfus

Fusion (melting) point

Ttriple

Triple point temperature

d(ln(kH))/d(1/T)

Temperature dependence parameter for Henry's Law constant

k°H

Henry's Law constant at 298.15K

ΔrG°

Free energy of reaction at standard conditions

ΔrH°

Enthalpy of reaction at standard conditions

ΔrS°

Entropy of reaction at standard conditions

ρc

Critical density

Data from NIST Standard Reference Database 69:

NIST Chemistry WebBook

The National Institute of Standards and Technology (NIST)

uses its best efforts to deliver a high quality copy of the

Database and to verify that the data contained therein have

been selected on the basis of sound scientific judgment.

However, NIST makes no warranties to that effect, and NIST

shall not be liable for any damage that may result from

errors or omissions in the Database.

Customer support

for NIST Standard Reference Data products.

© 2023 by the U.S. Secretary of Commerce

on behalf of the United States of America. All rights reserved.

Copyright for NIST Standard Reference Data is governed by

the

Standard Reference Data Act.

Privacy Statement

Privacy Policy

Security Notice

Disclaimer

(Note: This site is covered by copyright.)

Accessibility Statement

FOIA

Contact Us

Properties and uses of argon | Britannica

Properties and uses of argon | Britannica

Search Britannica

Click here to search

Search Britannica

Click here to search

Login

Subscribe

Subscribe

Home

Games & Quizzes

History & Society

Science & Tech

Biographies

Animals & Nature

Geography & Travel

Arts & Culture

Money

Videos

On This Day

One Good Fact

Dictionary

New Articles

History & Society

Lifestyles & Social Issues

Philosophy & Religion

Politics, Law & Government

World History

Science & Tech

Health & Medicine

Science

Technology

Biographies

Browse Biographies

Animals & Nature

Birds, Reptiles & Other Vertebrates

Bugs, Mollusks & Other Invertebrates

Environment

Fossils & Geologic Time

Mammals

Plants

Geography & Travel

Geography & Travel

Arts & Culture

Entertainment & Pop Culture

Literature

Sports & Recreation

Visual Arts

Companions

Demystified

Image Galleries

Infographics

Lists

Podcasts

Spotlights

Summaries

The Forum

Top Questions

#WTFact

100 Women

Britannica Kids

Saving Earth

Space Next 50

Student Center

Home

Games & Quizzes

History & Society

Science & Tech

Biographies

Animals & Nature

Geography & Travel

Arts & Culture

Money

Videos

argon

Table of Contents

argon

Related Summaries

Lord Rayleigh Summary

Discover

How Many Electoral College Votes Does Each U.S. State Have?

What Is the “Ides” of March?

How Mike the Chicken Survived Without a Head

7 of History's Most Notorious Serial Killers 

America’s 5 Most Notorious Cold Cases (Including One You May Have Thought Was Already Solved)

9 Things You Might Not Know About Adolf Hitler

Leap Day, February 29

Home

Science

Chemistry

argon Article

argon summary

Actions

Cite

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.

Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

MLA

APA

Chicago Manual of Style

Copy Citation

Share

Share

Share to social media

Facebook

Twitter

URL

https://www.britannica.com/summary/argon-chemical-element

Learn about the properties and uses of argon

Cite

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.

Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

MLA

APA

Chicago Manual of Style

Copy Citation

Share

Share

Share to social media

Facebook

Twitter

URL

https://www.britannica.com/summary/argon-chemical-element

Written and fact-checked by

The Editors of Encyclopaedia Britannica

Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.

The Editors of Encyclopaedia Britannica

Below is the article summary. For the full article, see argon.

argonProperties of argon.(more)argon, Chemical element, chemical symbol Ar, atomic number 18. Colourless, odourless, and tasteless, it is the most abundant of the noble gases on Earth and the one most used in industry. It constitutes about 1% of air and is obtained by distillation of liquid air. Argon provides an inert gas shield in welding and brazing, in lightbulbs and lasers, in Geiger counters, and in the production and fabrication of certain metals. Because a radioactive form of argon is produced by decay of a naturally occurring radioactive potassium isotope, it can be used to date rocks and samples more than 100,000 years old.

Lord Rayleigh Summary

Lord Rayleigh, English physical scientist who made fundamental discoveries in the fields of acoustics and optics that are basic to the theory of wave propagation in fluids. He received the Nobel Prize for Physics in 1904 for his successful isolation of argon, an inert atmospheric gas. Strutt